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Preface

Making decisions based on the input of multiple people or experts has been a
common practice in human civilization and serves as the foundation of a democratic
society. Over the past few decades, researchers in the computational intelligence
and machine learning community have studied schemes that share such a joint
decision procedure. These schemes are generally referred to as ensemble learning,
which is known to reduce the classifiers’ variance and improve the decision system’s
robustness and accuracy.

However, it was not until recently that researchers were able to fully unleash the
power and potential of ensemble learning with new algorithms such as boosting
and random forest. Today, ensemble learning has many real-world applications,
including object detection and tracking, scene segmentation and analysis, image
recognition, information retrieval, bioinformatics, data mining, etc. To give a
concrete example, most modern digital cameras are equipped with face detection
technology. While the human neural system has evolved for millions of years to
recognize human faces efficiently and accurately, detecting faces by computers has
long been one of the most challenging problems in computer vision. The problem
was largely solved by Viola and Jones, who developed a high-performance face
detector based on boosting (more details in Chap. 8). Another example is the random
forest-based skeleton tracking algorithm adopted in the Xbox Kinect sensor, which
allows people to interact with games freely without game controllers.

Despite the great success of ensemble learning methods recently, we found very
few books that were dedicated to this topic, and even fewer that provided insights
about how such methods shall be applied in real-world applications. The primary
goal of this book is to fill the existing gap in the literature and comprehensively cover
the state-of-the-art ensemble learning methods, and provide a set of applications
that demonstrate the various usages of ensemble learning methods in the real world.
Since ensemble learning is still a research area with rapid developments, we invited
well-known experts in the field to make contributions. In particular, this book
contains chapters contributed by researchers in both academia and leading industrial
research labs. It shall serve the needs of different readers at different levels. For
readers who are new to the subject, the book provides an excellent entry point with
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vi Preface

a high-level introductory view of the topic as well as an in-depth discussion of the
key technical details. For researchers in the same area, the book is a handy reference
summarizing the up-to-date advances in ensemble learning, their connections, and
future directions. For practitioners, the book provides a number of applications for
ensemble learning and offers examples of successful, real-world systems.

This book consists of two parts. The first part, from Chaps. 1 to 7, focuses more
on the theory aspect of ensemble learning. The second part, from Chaps. 8 to 11,
presents a few applications for ensemble learning.

Chapter 1, as an introduction for this book, provides an overview of various
methods in ensemble learning. A review of the well-known boosting algorithm is
given in Chap. 2. In Chap. 3, the boosting approach is applied for density estimation,
regression, and classification, all of which use kernel estimators as weak learners.
Chapter 4 describes a “targeted learning” scheme for the estimation of nonpathwise
differentiable parameters and considers a loss-based super learner that uses the
cross-validated empirical mean of the estimated loss as estimator of risk. Random
forest is discussed in detail in Chap. 5. Chapter 6 presents negative correlation-
based ensemble learning for improving diversity, which introduces the negatively
correlated ensemble learning algorithm and explains that regularization is an impor-
tant factor to address the overfitting problem for noisy data. Chapter 7 describes a
family of algorithms based on mixtures of Nystrom approximations called Ensemble
Nystrom algorithms, which yields more accurate low rank approximations than
the standard Nystrom method. Ensemble learning applications are presented from
Chaps. 8 to 11. Chapter 8 explains how the boosting algorithm can be applied in
object detection tasks, where positive examples are rare and the detection speed is
critical. Chapter 9 presents various ensemble learning techniques that have been
applied to the problem of human activity recognition. Boosting algorithms for
medical applications, especially medical image analysis are described in Chap. 10,
and random forest for bioinformatics applications is demonstrated in Chap. 11.
Overall, this book is intended to provide a solid theoretical background and practical
guide of ensemble learning to students and practitioners.

We would like to sincerely thank all the contributors of this book for presenting
their research in an easily accessible manner, and for putting such discussion into a
historical context. We would like to thank Brett Kurzman of Springer for his strong
support to this book.

Redmond, WA Cha Zhang
Golden Valley, MN Yunqian Ma
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Chapter 1
Ensemble Learning

Robi Polikar

1.1 Introduction

Over the last couple of decades, multiple classifier systems, also called ensemble
systems have enjoyed growing attention within the computational intelligence and
machine learning community. This attention has been well deserved, as ensemble
systems have proven themselves to be very effective and extremely versatile in
a broad spectrum of problem domains and real-world applications. Originally
developed to reduce the variance—thereby improving the accuracy—of an auto-
mated decision-making system, ensemble systems have since been successfully
used to address a variety of machine learning problems, such as feature selection,
confidence estimation, missing feature, incremental learning, error correction, class-
imbalanced data, learning concept drift from nonstationary distributions, among
others. This chapter provides an overview of ensemble systems, their properties,
and how they can be applied to such a wide spectrum of applications.

Truth be told, machine learning and computational intelligence researchers have
been rather late in discovering the ensemble-based systems, and the benefits offered
by such systems in decision making. While there is now a significant body of
knowledge and literature on ensemble systems as a result of a couple of decades
of intensive research, ensemble-based decision making has in fact been around
and part of our daily lives perhaps as long as the civilized communities existed.
You see, ensemble-based decision making is nothing new to us; as humans, we
use such systems in our daily lives so often that it is perhaps second nature to us.
Examples are many: the essence of democracy where a group of people vote to
make a decision, whether to choose an elected official or to decide on a new law,
is in fact based on ensemble-based decision making. The judicial system in many
countries, whether based on a jury of peers or a panel of judges, is also based on

R. Polikar (�)
Rowan University, Glassboro, NJ 08028, USA
e-mail: polikar@rowan.edu

C. Zhang and Y. Ma (eds.), Ensemble Machine Learning: Methods and Applications,
DOI 10.1007/978-1-4419-9326-7 1, © Springer Science+Business Media, LLC 2012

1



2 R. Polikar

ensemble-based decision making. Perhaps more practically, whenever we are faced
with making a decision that has some important consequence, we often seek the
opinions of different “experts” to help us make that decision; consulting with several
doctors before agreeing to a major medical operation, reading user reviews before
purchasing an item, calling references before hiring a potential job applicant, even
peer review of this article prior to publication, are all examples of ensemble-based
decision making. In the context of this discussion, we will loosely use the terms
expert, classifier, hypothesis, and decision interchangeably.

While the original goal for using ensemble systems is in fact similar to the reason
we use such mechanisms in our daily lives—that is, to improve our confidence that
we are making the right decision, by weighing various opinions, and combining
them through some thought process to reach a final decision—there are many
other machine-learning specific applications of ensemble systems. These include
confidence estimation, feature selection, addressing missing features, incremental
learning from sequential data, data fusion of heterogeneous data types, learning non-
stationary environments, and addressing imbalanced data problems, among others.

In this chapter, we first provide a background on ensemble systems, including
statistical and computational reasons for using them. Next, we discuss the three pil-
lars of the ensemble systems: diversity, training ensemble members, and combining
ensemble members. After an overview of commonly used ensemble-based algo-
rithms, we then look at various aforementioned applications of ensemble systems as
we try to answer the question “what else can ensemble systems do for you?”

1.1.1 Statistical and Computational Justifications
for Ensemble Systems

The premise of using ensemble-based decision systems in our daily lives is
fundamentally not different from their use in computational intelligence. We consult
with others before making a decision often because of the variability in the past
record and accuracy of any of the individual decision makers. If in fact there were
such an expert, or perhaps an oracle, whose predictions were always true, we would
never need any other decision maker, and there would never be a need for ensemble-
based systems. Alas, no such oracle exists; every decision maker has an imperfect
past record. In other words, the accuracy of each decision maker’s decision has
a nonzero variability. Now, note that any classification error is composed of two
components that we can control: bias, the accuracy of the classifier; and variance,
the precision of the classifier when trained on different training sets. Often, these
two components have a trade-off relationship: classifiers with low bias tend to have
high variance and vice versa. On the other hand, we also know that averaging has
a smoothing (variance-reducing) effect. Hence, the goal of ensemble systems is to
create several classifiers with relatively fixed (or similar) bias and then combining
their outputs, say by averaging, to reduce the variance.
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Fig. 1.1 Variability reduction using ensemble systems

The reduction of variability can be thought of as reducing high-frequency
(high-variance) noise using a moving average filter, where each sample of the
signal is averaged by a neighbor of samples around it. Assuming that noise in
each sample is independent, the noise component is averaged out, whereas the
information content that is common to all segments of the signal is unaffected by the
averaging operation. Increasing classifier accuracy using an ensemble of classifiers
works exactly the same way: assuming that classifiers make different errors on each
sample, but generally agree on their correct classifications, averaging the classifier
outputs reduces the error by averaging out the error components.

It is important to point out two issues here: first, in the context of ensemble
systems, there are many ways of combining ensemble members, of which averaging
the classifier outputs is only one method. We discuss different combination schemes
later in this chapter. Second, combining the classifier outputs does not necessarily
lead to a classification performance that is guaranteed to be better than the best
classifier in the ensemble. Rather, it reduces our likelihood of choosing a classifier
with a poor performance. After all, if we knew a priori which classifier would
perform the best, we would only use that classifier and would not need to use
an ensemble. A representative illustration of the variance reduction ability of the
ensemble of classifiers is shown in Fig. 1.1.
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1.1.2 Development of Ensemble Systems

Many reviews refer to Dasarathy and Sheela’s 1979 work as one of the earliest
example of ensemble systems [1], with their ideas on partitioning the feature
space using multiple classifiers. About a decade later, Hansen and Salamon showed
that an ensemble of similarly configured neural networks can be used to improve
classification performance [2]. However, it was Schapire’s work that demonstrated
through a procedure he named boosting that a strong classifier with an arbitrarily
low error on a binary classification problem, can be constructed from an ensemble
of classifiers, the error of any of which is merely better than that of random guessing
[3]. The theory of boosting provided the foundation for the subsequent suite
of AdaBoost algorithms, arguably the most popular ensemble-based algorithms,
extending the boosting concept to multiple class and regression problems [4]. We
briefly describe the boosting algorithms below, but a more detailed coverage of these
algorithms can be found in Chap. 2 of this book, and Kuncheva’s text [5].

In part due to success of these seminal works, and in part based on independent
efforts, research in ensemble systems have since exploded, with different flavors of
ensemble-based algorithms appearing under different names: bagging [6], random
forests (an ensemble of decision trees), composite classifier systems [1], mixture
of experts (MoE) [7, 8], stacked generalization [9], consensus aggregation [10],
combination of multiple classifiers [11–15], dynamic classifier selection [15],
classifier fusion [16–18], committee of neural networks [19], classifier ensembles
[19, 20], among many others. These algorithms, and in general all ensemble-based
systems, typically differ from each other based on the selection of training data for
individual classifiers, the specific procedure used for generating ensemble members,
and/or the combination rule for obtaining the ensemble decision. As we will see,
these are the three pillars of any ensemble system.

In most cases, ensemble members are used in one of two general settings:
classifier selection and classifier fusion [5, 15, 21]. In classifier selection, each
classifier is trained as a local expert in some local neighborhood of the entire
feature space. Given a new instance, the classifier trained with data closest to
the vicinity of this instance, in some distance metric sense, is then chosen to
make the final decision, or given the highest weight in contributing to the final
decision [7, 15, 22, 23]. In classifier fusion all classifiers are trained over the entire
feature space, and then combined to obtain a composite classifier with lower
variance (and hence lower error). Bagging [6], random forests [24], arc-x4 [25], and
boosting/AdaBoost [3, 4] are examples of this approach. Combining the individual
classifiers can be based on the labels only, or based on class-specific continuous
valued outputs [18, 26, 27], for which classifier outputs are first normalized to
the [0, 1] interval to be interpreted as the support given by the classifier to each
class [18, 28]. Such interpretation leads to algebraic combination rules (simple or
weighted majority voting, maximum/minimum/sum/product, or other combinations
class-specific outputs) [12, 27, 29], the Dempster–Shafer-based classifier fusion
[13, 30], or decision templates [18, 21, 26, 31]. Many of these combination rules
are discussed below in more detail.
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A sample of the immense literature on classifier combination can be found in
Kuncheva’s book [5] (and references therein), an excellent text devoted to theory
and implementation of ensemble-based classifiers.

1.2 Building an Ensemble System

Three strategies need to be chosen for building an effective ensemble system. We
have previously referred to these as the three pillars of ensemble systems: (1) data
sampling/selection; (2) training member classifiers; and (3) combining classifiers.

1.2.1 Data Sampling and Selection: Diversity

Making different errors on any given sample is of paramount importance in
ensemble-based systems. After all, if all ensemble members provide the same
output, there is nothing to be gained from their combination. Therefore, we need
diversity in the decisions of ensemble members, particularly when they are making
an error. The importance of diversity for ensemble systems is well established
[32, 33]. Ideally, classifier outputs should be independent or preferably negatively
correlated [34, 35].

Diversity in ensembles can be achieved through several strategies, although using
different subsets of the training data is the most common approach, also illustrated
in Fig. 1.1. Different sampling strategies lead to different ensemble algorithms. For
example, using bootstrapped replicas of the training data leads to bagging, whereas
sampling from a distribution that favors previously misclassified samples is the core
of boosting algorithms. On the other hand, one can also use different subsets of the
available features to train each classifier, which leads to random subspace methods
[36]. Other less common approaches also include using different parameters of the
base classifier (such as training an ensemble of multilayer perceptrons, each with a
different number of hidden layer nodes), or even using different base classifiers as
the ensemble members. Definitions of different types of diversity measures can be
found in [5, 37, 38]. We should also note that while the importance of diversity, and
lack of diversity leading to inferior ensemble performance has been wellestablished,
an explicit relationship between diversity and ensemble accuracy has not been
identified [38, 39].

1.2.2 Training Member Classifiers

At the core of any ensemble-based system is the strategy used to train individual
ensemble members. Numerous competing algorithms have been developed for
training ensemble classifiers; however, bagging (and related algorithms arc-x4
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and random forests), boosting (and its many variations), stack generalization and
hierarchical MoE remain as the most commonly employed approaches. These
approaches are discussed in more detail below, in Sect. 1.3.

1.2.3 Combining Ensemble Members

The last step in any ensemble-based system is the mechanism used to combine
the individual classifiers. The strategy used in this step depends, in part, on the
type of classifiers used as ensemble members. For example, some classifiers, such
as support vector machines, provide only discrete-valued label outputs. The most
commonly used combination rules for such classifiers is (simple or weighted)
majority voting followed at a distant second by the Borda count. Other classifiers,
such as multilayer perceptron or (naı̈ve) Bayes classifier, provide continuous valued
class-specific outputs, which are interpreted as the support given by the classifier
to each class. A wider array of options is available for such classifiers, such as
arithmetic (sum, product, mean, etc.) combiners or more sophisticated decision
templates, in addition to voting-based approaches. Many of these combiners can be
used immediately after the training is complete, whereas more complex combination
algorithms may require an additional training step (as used in stacked generalization
or hierarchical MoE). We now briefly discuss some of these approaches.

1.2.3.1 Combining Class Labels

Let us first assume that only the class labels are available from the classifier outputs,
and define the decision of the t th classifier as dt;c 2 f0,1g, t D 1, . . . , T and cD 1, . . . ,
C , where T is the number of classifiers and C is the number of classes. If t th classifier
(or hypothesis) ht chooses class !c , then dt;c D 1, and 0, otherwise. Note that the
continuous valued outputs can easily be converted to label outputs (by assigning
dt;c D 1 for the class with the highest output), but not vice versa. Therefore, the
combination rules described in this section can also be used by classifiers providing
specific class supports.

Majority Voting

Majority voting has three flavors, depending on whether the ensemble decision
is the class (1) on which all classifiers agree (unanimous voting); (2) predicted
by at least one more than half the number of classifiers (simple majority); or (3)
that receives the highest number of votes, whether or not the sum of those votes
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exceeds 50% (plurality voting). When not specified otherwise, majority voting
usually refers to plurality voting, which can be mathematically defined as follows:
choose class !c� , if

TX

tD1

dt;c� D maxc

TX

tD1

dt;c (1.1)

If the classifier outputs are independent, then it can be shown that majority
voting is the optimal combination rule. To see this, consider an odd number of
T classifiers, with each classifier having a probability of correct classification p.
Then, the ensemble makes the correct decision if at least bT=2c C 1 of these
classifiers choose the correct label. Here, the floor function b�c returns the largest
integer less than or equal to its argument. The accuracy of the ensemble is governed
by the binomial distribution; the probability of having k � T /2C 1 out of T

classifiers returning the correct class. Since each classifier has a success rate of p,
the probability of ensemble success is then

pens D
TX

kD T
2 C1

�
T

k

�
pk.1 � p/T �k (1.2)

Note that Pens approaches 1 as T !1, if p > 0.5; and it approaches 0 if p < 0.5.
This result is also known as the Condorcet Jury theorem (1786), as it formalizes
the probability of a plurality-based jury decision to be the correct one. Equation
(1.2) makes a powerful statement: if the probability of a member classifier giving
the correct answer is higher than 1=2, which really is the least we can expect from
a classifier on a binary class problem, then the probability of success approaches 1
very quickly. If we have a multiclass problem, the same concept holds as long as
each classifier has a probability of success better than random guessing (i.e., p > 1=4

for a four class problem). An extensive and excellent analysis of the majority voting
approach can be found in [5].

Weighted Majority Voting

If we have reason to believe that some of the classifiers are more likely to be correct
than others, weighting the decisions of those classifiers more heavily can further
improve the overall performance compared to that of plurality voting. Let us assume
that we have a mechanism for predicting the (future) approximate generalization
performance of each classifier. We can then assign a weight Wt to classifier ht in
proportion of its estimated generalization performance. The ensemble, combined
according to weighted majority voting then chooses class c�, if

XT

tD1
wt dt;c� D maxc

XT

tD1
wt dt;c (1.3)
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that is, if the total weighted vote received by class !c� is higher than the total vote
received by any other class. In general, voting weights are normalized such that they
add up to 1.

So, how do we assign the weights? If we knew, a priori, which classifiers would
work better, we would only use those classifiers. In the absence of such information,
a plausible and commonly used strategy is to use the performance of a classifier on
a separate validation (or even training) dataset, as an estimate of that classifier’s
generalization performance. As we will see in the later sections, AdaBoost follows
such an approach. A detailed discussion on weighted majority voting can also be
found in [40].

Borda Count

Voting approaches typically use a winner-take-all strategy, i.e., only the class that
is chosen by each classifier receives a vote, ignoring any support that nonwinning
classes may receive. Borda count uses a different approach, feasible if we can rank
order the classifier outputs, that is, if we know the class with the most support (the
winning class), as well as the class with the second most support, etc. Of course,
if the classifiers provide continuous outputs, the classes can easily be rank ordered
with respect to the support they receive from the classifier.

In Borda count, devised in 1770 by Jean Charles de Borda, each classifier
(decision maker) rank orders the classes. If there are C candidates, the winning
class receives C -1 votes, the class with the second highest support receives C -2
votes, and the class with the i th highest support receives C -i votes. The class with
the lowest support receives no votes. The votes are then added up, and the class with
the most votes is chosen as the ensemble decision.

1.2.3.2 Combining Continuous Outputs

If a classifier provides continuous output for each class (such as multilayer percep-
tron or radial basis function networks, naı̈ve Bayes, relevance vector machines, etc.),
such outputs—upon proper normalization (such as softmax normalization in (1.4)
[41])—can be interpreted as the degree of support given to that class, and under
certain conditions can also be interpreted as an estimate of the posterior probability
for that class. Representing the actual classifier output corresponding to class !c

for instance x as gc(x), and the normalized values as Qgc(x), approximated posterior
probabilities P (!c jx) can be obtained as

P.!c jx/ � Qgc(x) D egc.x/

PC
iD1 egi .x/

)
XC

iD1
Qgi (x) D 1 (1.4)
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Fig. 1.2 Decision profile for
a given instance x

In order to consolidate different combination rules, we use Kuncheva’s decision
profile matrix DP(x) [18], whose elements dt;c 2 [0, 1] represent the support given
by the t th classifier to class !c . Specifically, as illustrated in Fig. 1.2, the rows of
DP(x) represent the support given by individual classifiers to each of the classes,
whereas the columns represent the support received by a particular class c from all
classifiers.

Algebraic Combiners

In algebraic combiners, the total support for each class is obtained as a simple
algebraic function of the supports received by individual classifiers. Following the
notation used in [18], let us represent the total support received by class !c , the cth

column of the decision profile DP(x), as

�c(x) D F Œd1;c(x); :::; dT;C (x)� (1.5)

where F [�] is one of the following combination functions.

Mean Rule: The support for class !c is the average of all classifiers’ cth outputs,

�c(x) D 1

T

XT

tD1
dt;c(x) (1.6)

hence the function F [�] is the averaging function. Note that the mean rule results in
the identical final classification as the sum rule, which only differs from the mean
rule by the 1/T normalization factor. In either case, the final decision is the class !c

for which the total support �c(x) is the highest.

Weighted Average: The weighted average rule combines the mean and the weighted
majority voting rules, where the weights are applied not to class labels, but to
the actual continuous outputs. The weights can be obtained during the ensemble
generation as part of the regular training, as in AdaBoost, or a separate training
can be used to obtain the weights, such as in a MoE. Usually, each classifier ht

receives a weight, although it is also possible to assign a weight to each class output
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of each classifier. In the former case, we have T weights, w1, . . . , wT , usually
obtained as estimated generalization performances based on training data, with the
total support for class !c as

�c(x) D 1

T

XT

tD1
wt dt;c(x) (1.7)

In the latter case, there are T * C class and classifier-specific weights, which leads
to a class-conscious combination of classifier outputs [18]. Total support for class
!c is then

�c(x) D 1

T

XT

tD1
wt;cdt;c(x) (1.8)

where wt;c is the weight of the t th classifier for classifying class !c instances.

Trimmed mean: Sometimes classifiers may erroneously give unusually low or high
support to a particular class such that the correct decisions of other classifiers are not
enough to undo the damage done by this unusual vote. This problem can be avoided
by discarding the decisions of those classifiers with the highest and lowest support
before calculating the mean. This is called trimmed mean. For a R% trimmed mean,
R% of the support from each end is removed, with the mean calculated on the
remaining supports, avoiding the extreme values of support. Note that 50% trimmed
mean is equivalent to the median rule discussed below.

Minimum/Maximum/Median Rule: These functions simply take the minimum,
maximum, or the median among the classifiers’ individual outputs.

�c(x) D mintD1;:::;T fdt;c(x)g
�c(x) D maxtD1;:::;T fdt;c(x)g
�c(x) D mediantD1;:::;T fdt;c(x)g (1.9)

where the ensemble decision is chosen as the class for which total support is largest.
Note that the minimum rule chooses the class for which the minimum support among
the classifiers is highest.

Product Rule: The product rule chooses the class whose product of supports from
each classifier is the highest. Due to the nulling nature of multiplying with zero, this
rule decimates any class that receives at least one zero (or very small) support.

�c(x) D 1

T

YT

tD1
dt;c(x) (1.10)

Generalized Mean: All of the aforementioned rules are in fact special cases of the
generalized mean,

�c(x) D
�

1

T

XT

tD1
.dt;c(x)/˛

�1=˛

(1.11)



1 Ensemble Learning 11

where different choices of ˛ lead to different combination rules. For example,
˛! -1, leads to minimum rule, and ˛! 0, leads to

�c.x/ D
�YT

tD1
.dt;c.x//

�1=T

(1.12)

which is the geometric mean, a modified version of the product rule. For ˛! 1, we
get the mean rule, and ˛! 1 leads to the maximum rule.

Decision Template: Consider computing the average decision profile observed for
each class throughout training. Kuncheva defines this average decision profile as the
decision template of that class [18]. We can then compare the decision profile of
a given instance to the decision templates (i.e., average decision profiles) of each
class, choosing the class whose decision template is closest to the decision profile
of the current instance, in some similarity measure. The decision template for class
!c is then computed as

DTc D 1=Nc

X
Xc2!c

DP .Xc/ (1.13)

as the average decision profile obtained from Xc , the set of training instances (of
cardinality Nc/ whose true class is !c . Given an unlabeled test instance x, we first
construct its decision profile DP(x) from the ensemble outputs and calculate the
similarity S between DP(x) and the decision template DTc for each class !c as the
degree of support given to class !c .

�c(x) D S.DP.x/; DTc/; c D 1; : : : ; C (1.14)

where the similarity measure S is usually a squared Euclidean distance,

�c(x) D 1 � 1

T � C

XT

tD1

XC

iD1
.DTc.t; i/� dt;i (x)/

2

(1.15)

and where DTc.t; i / is the decision template support given by the t th classifier to
class !i , i.e., the support given by the t th classifier to class !i , averaged over all
class !c training instances. We expect this support to be high when i D c, and low
otherwise. The second term dt;i .x/ is the support given by the t th classifier to class
!i for the given instance x. The class with the highest total support is then chosen
as the ensemble decision.

1.3 Popular Ensemble-Based Algorithms

A rich collection of ensemble-based classifiers have been developed over the last
several years. However, many of these are some variation of the select few well-
established algorithms whose capabilities have also been extensively tested and
widely reported. In this section, we present an overview of some of the most
prominent ensemble algorithms.
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Algorithm 1 Bagging

Inputs: Training data S ; supervised learning algorithm, BaseClassifier, integer T

specifying ensemble size; percent R to create bootstrapped training data.
Do t = 1, . . . , T

1. Take a bootstrapped replica St by randomly drawing R% of S .
2. Call BaseClassifier with St and receive the hypothesis (classifier) ht .
3. Add ht to the ensemble, " " [ ht .

End
Ensemble Combination: Simple Majority Voting—Given unlabeled instance x

1. Evaluate the ensemble " = fh1, . . . , hT g on x.
2. Let vt;c = 1 if ht chooses class !c , and 0, otherwise.
3. Obtain total vote received by each class

Vc D
XT

tD1
vt;c ; c D 1; :::; C (1.16)

Output: Class with the highest Vc .

1.3.1 Bagging

Breiman’s bagging (short for Bootstrap Aggregation) algorithm is one of the earliest
and simplest, yet effective, ensemble-based algorithms. Given a training dataset
S of cardinality N , bagging simply trains T independent classifiers, each trained
by sampling, with replacement, N instances (or some percentage of N / from S .
The diversity in the ensemble is ensured by the variations within the bootstrapped
replicas on which each classifier is trained, as well as by using a relatively weak
classifier whose decision boundaries measurably vary with respect to relatively
small perturbations in the training data. Linear classifiers, such as decision stumps,
linear SVM, and single layer perceptrons are good candidates for this purpose. The
classifiers so trained are then combined via simple majority voting. The pseudocode
for bagging is provided in Algorithm 1.

Bagging is best suited for problems with relatively small available training
datasets. A variation of bagging, called Pasting Small Votes [42], designed for
problems with large training datasets, follows a similar approach, but partitioning
the large dataset into smaller segments. Individual classifiers are trained with these
segments, called bites, before combining them via majority voting.

Another creative version of bagging is the Random Forest algorithm, essentially
an ensemble of decision trees trained with a bagging mechanism [24]. In addition
to choosing instances, however, a random forest can also incorporate random subset
selection of features as described in Ho’s random subspace models [36].
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1.3.2 Boosting and AdaBoost

Boosting, introduced in Schapire’s seminal work strength of weak learning [3],
is an iterative approach for generating a strong classifier, one that is capable of
achieving arbitrarily low training error, from an ensemble of weak classifiers, each
of which can barely do better than random guessing. While boosting also combines
an ensemble of weak classifiers using simple majority voting, it differs from bagging
in one crucial way. In bagging, instances selected to train individual classifiers are
bootstrapped replicas of the training data, which means that each instance has equal
chance of being in each training dataset. In boosting, however, the training dataset
for each subsequent classifier increasingly focuses on instances misclassified by
previously generated classifiers.

Boosting, designed for binary class problems, creates sets of three weak classi-
fiers at a time: the first classifier (or hypothesis) h1 is trained on a random subset of
the available training data, similar to bagging. The second classifier, h2, is trained
on a different subset of the original dataset, precisely half of which is correctly
identified by h1, and the other half is misclassified. Such a training subset is said to
be the “most informative,” given the decision of h1. The third classifier h3 is then
trained with instances on which h1 and h2 disagree. These three classifiers are then
combined through a three-way majority vote. Schapire proved that the training error
of this three-classifier ensemble is bounded above by g(") < 3"2 � 2"3, where " is
the error of any of the three classifiers, provided that each classifier has an error rate
"< 0.5, the least we can expect from a classifier on a binary classification problem.

AdaBoost (short for Adaptive Boosting) [4], and its several variations later
extended the original boosting algorithm to multiple classes (AdaBoost.M1,
AdaBost.M2), as well as to regression problems (AdaBoost.R). Here we describe
the AdaBoost.M1, the most popular version of the AdaBoost algorithms.

AdaBoost has two fundamental differences from boosting: (1) instances are
drawn into the subsequent datasets from an iteratively updated sample distribution
of the training data; and (2) the classifiers are combined through weighted majority
voting, where voting weights are based on classifiers’ training errors, which them-
selves are weighted according to the sample distribution. The sample distribution
ensures that harder samples, i.e., instances misclassified by the previous classifier
are more likely to be included in the training data of the next classifier.

The pseudocode of the AdaBoost.M1 is provided in Algorithm 2. The sample
distribution, Dt .i/ essentially assigns a weight to each training instance xi , i D 1,
. . . , N , from which training data subsets St are drawn for each consecutive classifier
(hypothesis) ht . The distribution is initialized to be uniform; hence, all instances
have equal probability to be drawn into the first training dataset. The training error
"t of classifier ht is then computed as the sum of these distribution weights of the
instances misclassified by ht ((1.17), where ��� is 1 if its argument is true and
0 otherwise). AdaBoost.M1 requires that this error be less than 1=2, which is then
normalized to obtain ˇt , such that 0 < ˇt < 1 for 0 < "t < 1=2.
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Algorithm 2 AdaBoost.M1

Inputs: Training data = fxi , yi g, i = 1, . . . , N yi 2 f!1, . . . , !C g, supervised learner
BaseClassifier; ensemble size T .
Initialize D1.i/ = 1/N:

Do for t = 1, 2, . . . , T :

1. Draw training subset St from the distribution Dt .
2. Train BaseClassifier on St , receive hypothesis ht : X ! Y

3. Calculate the error of ht :

"t D
X

i
I �ht .xi ¤ yi /�Dt .xi / (1.17)

If "t > 1=2 abort.
4. Set

ˇt D "t =.1 � "t / (1.18)

5. Update sampling distribution

DtC1.i/ D Dt .i/

Zt

�
�

ˇt ; if ht .xi / D yi

1; otherwise
(1.19)

where Zt D P
i Dt .i/ is a normalization constant to ensure that DtC1 is a

proper distribution function.

End
Weighted Majority Voting: Given unlabeled instance z,

obtain total vote received by each class

Vc D
X

t Wht .z/D!c

log

�
1

ˇt

�
; c D 1; :::; C (1.20)

Output: Class with the highest Vc .

The heart of AdaBoost.M1 is the distribution update rule shown in (1.19): the
distribution weights of the instances correctly classified by the current hypothesis
ht are reduced by a factor of ˇt , whereas the weights of the misclassified instances
are left unchanged. When the updated weights are renormalized by Zt to ensure
that DtC1 is a proper distribution, the weights of the misclassified instances are
effectively increased. Hence, with each new classifier added to the ensemble,
AdaBoost focuses on increasingly difficult instances. At each iteration t , (1.19)
raises the weights of misclassified instances such that they add up to 1=2, and lowers
those of correctly classified ones, such that they too add up to 1=2. Since the base
model learning algorithm BaseClassifier is required to have an error less than 1=2,
it is guaranteed to correctly classify at least one previously misclassified training
example. When it is unable to do so, AdaBoost aborts; otherwise, it continues until
T classifiers are generated, which are then combined using the weighted majority
voting.
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Note that the reciprocals of the normalized errors of individual classifiers are used
as voting weights in weighted majority voting in AdaBoost.M1; hence, classifiers
that have shown good performance during training (low ˇt / are rewarded with
higher voting weights. Since the performance of a classifier on its own training data
can be very close to zero, ˇt can be quite large, causing numerical instabilities. Such
instabilities are avoided by the use of the logarithm in the voting weights (1.20).

Much of the popularity of AdaBoost.M1 is not only due to its intuitive and
extremely effective structure but also due to Freund and Schapire’s elegant proof
that shows the training error of AdaBoost.M1 as bounded above

Eensemble < 2T

TY

tD1

p
"t .1� "t / (1.21)

Since "t < 1/2, Eensemble, the error of the ensemble, is guaranteed to decrease
as the ensemble grows. It is interesting, however, to note that AdaBoost.M1 still
requires the classifiers to have a (weighted) error that is less than 1=2 even on
nonbinary class problems. Achieving this threshold becomes increasingly difficult
as the number of classes increase. Freund and Schapire recognized that there is
information even in the classifiers’ nonselected class outputs. For example, in
handwritten character recognition problem, the characters “1” and “7” look alike,
and the classifier may give a high support to both of these classes, and low support
to all others. AdaBoost.M2 takes advantage of the supports given to nonchosen
classes and defines a pseudo-loss, and unlike the error in AdaBoost.M1, is no
longer required to be less than 1=2. Yet AdaBoost.M2 has a very similar upper bound
for training error as AdaBoost.M1. AdaBoost.R is another variation—designed for
function approximation problems—that essentially replaces classification error with
regression error [4].

1.3.3 Stacked Generalization

The algorithms described so far use nontrainable combiners, where the combination
weights are established once the member classifiers are trained. Such a combination
rule does not allow determining which member classifier has learned which partition
of the feature space. Using trainable combiners, it is possible to determine which
classifiers are likely to be successful in which part of the feature space and combine
them accordingly. Specifically, the ensemble members can be combined using a
separate classifier, trained on the outputs of the ensemble members, which leads to
the stacked generalization model.

Wolpert’s stacked generalization [9], illustrated in Fig. 1.3, first creates T Tier-1
classifiers, C1, . . . , CT , based on a cross-validation partition of the training data. To
do so, the entire training dataset is divided into B blocks, and each Tier-1 classifier is
first trained on (a different set of) B�1 blocks of the training data. Each classifier is
then evaluated on the B th (pseudo-test) block, not seen during training. The outputs
of these classifiers on their pseudo-training blocks constitute the training data for
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Fig. 1.3 Stacked generalization

the Tier-2 (meta) classifier, which effectively serves as the combination rule for the
Tier-1 classifiers. Note that the meta-classifier is not trained on the original feature
space, but rather on the decision space of Tier-1 classifiers.

Once the meta-classifier is trained, all Tier-1 classifiers (each of which has
been trained B times on overlapping subsets of the original training data) are
discarded, and each is retrained on the combined entire training data. The stacked
generalization model is then ready to evaluate previously unseen field data.

1.3.4 Mixture of Experts

Mixture of experts is a similar algorithm, also using a trainable combiner. MoE,
also trains an ensemble of (Tier-1) classifiers using a suitable sampling technique.
Classifiers are then combined through a weighted combination rule, where the
weights are determined through a gating network [7], which itself is typically trained
using expectation-maximization (EM) algorithm [8,43] on the original training data.
Hence, the weights determined by the gating network are dynamically assigned
based on the given input, as the MoE effectively learns which portion of the feature
space is learned by each ensemble member. Figure 1.4 illustrates the structure of the
MoE algorithm.

Mixture-of-experts can also be seen as a classifier selection algorithm, where
individual classifiers are trained to become experts in some portion of the feature
space. In this setting, individual classifiers are indeed trained to become experts, and
hence are usually not weak classifiers. The combination rule then selects the most
appropriate classifier, or classifiers weighted with respect to their expertise, for each
given instance. The pooling/combining system may then choose a single classifier
with the highest weight, or calculate a weighted sum of the classifier outputs for
each class, and pick the class that receives the highest weighted sum.
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Fig. 1.4 Mixture of experts model

1.4 What Else Can Ensemble Systems Do for You?

While ensemble systems were originally developed to reduce the variability in
classifier decision and thereby increase generalization performance, there are many
additional problem domains where ensemble systems have proven to be extremely
effective. In this section, we discuss some of these emerging applications of
ensemble systems along with a family of algorithms, called LearnCC, which are
designed for these applications.

1.4.1 Incremental Learning

In many real-world applications, particularly those that generate large volumes of
data, such data often become available in batches over a period of time. These
applications need a mechanism to incorporate the additional data into the knowledge
base in an incremental manner, preferably without needing access to the previous
data. Formally speaking, incremental learning refers to sequentially updating a
hypothesis using current data and previous hypotheses—but not previous data—
such that the current hypothesis describes all data that have been acquired thus far.
Incremental learning is associated with the well-known stability–plasticity dilemma,
where stability refers to the algorithm’s ability to retain existing knowledge and
plasticity refers to the algorithm’s ability to acquire new data. Improving one usually
comes at the expense of the other. For example, online data streaming algorithms



18 R. Polikar

usually have good plasticity but poor stability, whereas many of the well-established
supervised algorithms, such as MLP, SVM, and kNN have good stability but poor
plasticity properties.

Ensemble-based systems provide an intuitive approach for incremental learning
that also provides a balanced solution to the stability–plasticity dilemma. Consider
the AdaBoost algorithm which directs the subsequent classifiers toward increasingly
difficult instances. In an incremental learning setting, some of the instances
introduced by the new batch can also be interpreted as “difficult” if they carry novel
information. Therefore, an AdaBoost-like approach can be used in an incremental
learning setting with certain modifications, such as creating a new ensemble with
each batch that become available; resetting the sampling distribution based on the
performance of the existing ensemble on the new batch of training data, and relaxing
the abort clause. Note, however, that distribution update rule in AdaBoost directs the
sampling distribution toward those instances misclassified by the previous classifier.
In an incremental learning setting, it is necessary to direct the algorithm to focus on
those novel instances introduced by the new batch of data that are not yet learned by
the current ensemble, not by the previous classifier. Learn CC algorithm, introduced
in [44, 45], incorporate these ideas.

The incremental learning problem becomes particularly challenging if the new
data also introduce new classes. This is because classifiers previously trained on
earlier batches of data inevitably misclassify instances of the new class on which
they were not trained. Only the new classifiers are able to recognize the new
class(es). Therefore, any decision by the new classifiers correctly choosing the new
class is outvoted by the earlier classifiers, until there are enough new classifiers
to counteract the total vote of those original classifiers. Hence, a relatively large
number of new classifiers that recognize the new class are needed, so that their total
weight can overwrite the incorrect votes of the original classifiers.

The Learn CC.NC (for N ew C lasses), described in Algorithm 3, addresses
these issues [46] by assigning dynamic weights to ensemble members, based on
its prediction of which classifiers are likely to perform well on which classes.
Learn CC.NC cross-references the predictions of each classifier—with those of
others—with respect to classes on which they were trained. Looking at the decisions
of other classifiers, each classifier decides whether its decision is in line with the
predictions of others, and the classes on which it was trained. If not, the classifier
reduces its vote, or possibly refrains from voting altogether. As an example, consider
an ensemble of classifiers, E1, trained with instances from two classes !1, and !2;
and a second ensemble, E2, trained on instances from classes !1, !2, and a new
class, !3. An instance from the new class !3 is shown to all classifiers. Since E1

classifiers do not recognize class !3, they incorrectly choose !1 or !2, whereas E2

classifiers correctly recognize !3. Learn CC.NC keeps track of which classifiers
are trained on which classes. In this example, knowing that E2 classifiers have
seen !3 instances, and that E1 classifiers have not, it is reasonable to believe that
E2 classifiers are correct, particularly if they overwhelmingly choose !3 for that
instance. To the extent E2 classifiers are confident of their decision, the voting
weights of E1 classifiers can therefore be reduced. Then, E2 no longer needs a
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large number of classifiers: in fact, if E2 classifiers agree with each other on their
correct decision, then very few classifiers are adequate to remove any bias induced
by E1. This voting process, described in Algorithm 4, is called dynamically weighted
consult-and-vote (DW-CAV) [46].

Algorithm 3 LearnCC.NC

Input: For each dataset k = 1, . . . , K , training data Sk = fxi ; yi g, i = 1, . . . , Nk

yi 2 ˝ = f!1, . . . , !C g, supervised learner BaseClassifier; ensemble size Tk.
Do for k = 1, . . . , K:

1. Initialize instance weights wk
1 .i/ D 1/Nk.

2. If k ¤ 1, Set t = 0 and Go to Step 5 to adjust initialization weights.

Do for t = 1, . . . , Tk .

1. Set

Dk
t D wk

t

�XNk

iD1
wk

t .i/ (1.22)

so that Dk
t is a distribution.

2. Train BaseClassifier on TRk
t � Sk drawn from Dk

t , receive hk
t .

3. Calculate error

"k
t D

X
i
I

��
hk

t .xi ¤ yi /
��

Dk
t .xi / (1.23)

4. If "k
t > 1

2
discard hk

t and go to Step 2. Otherwise, normalize "k
t :

Normalize "k
t :

ˇk
t D "k

t /
�
1 � "k

t

	
(1.24)

5. Let CLk
t be the set of class labels used in training hk

t for dataset Sk .
6. Call DW-CAV to obtain the composite hypothesis H k

t .
7. Compute the error of the composite hypothesis

Ek
t D

X
i
I

��
H k

t .xi ¤ yi /
��

Dk
t .xi / (1.25)

8. Normalize Ek
t : Bk

t D Ek
t

ı�
1 � Ek

t

	
, and update the weights:

W k
tC1 .i/ D wk

t .i/ �
�

Bk
t ; H k

t .xi D yi /

1; otherwise
(1.26)

End
End
Call DW-CAV to obtain the final hypothesis, Hfinal.
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Algorithm 4 DW-CAV (Dynamically Weighed—Consult and Vote).

Inputs: Instance xi to be classified; all classifiers hk
t generated thus far; normalized

error values, ˇk
t ; class labels, CLk

t used in training hk
t .

Initialize classifier voting weights W k
t D log

�
1/ˇk

t

	
.

Calculate for each !c 2f!1, . . . , !C g.
1. Normalization factor:

Zc D
X

k

X
t Wc2CLk

t

W k
t (1.27)

2. Class-specific confidence:

Pc.i/ D
P

k

P
t Wht

k.xi / D !c
W k

t

Zc

(1.28)

3. If Pk.i/ D Pl .i/, k ¤ l such that "k \ "lD ;Pk.i/ D Pl .i/ D 0

where "k is the set of classifiers that have seen class !k .
Update voting weights for instance xi

W k
t .i/ D W k

t �
Y

cW!c…CLk
t

.1 � Pc.i// (1.29)

Compute final (current composite) hypothesis

Hfinal.xi / D arg max
!2˝

X
k

X
t Wht

k.xi / D !c

W k
t .i/ (1.30)

Specifically, Learn CC.NC updates its sampling distribution based on the com-
posite hypothesis H ((1.25)), which is the ensemble decision of all classifiers
generated thus far. The composite hypothesis H k

t for the first t classifiers from the
kth batch is computed by the weighted majority voting of all classifiers using the
weights W k

t , which themselves are weighted based on each classifiers class-specific
confidence Pc ((1.27) and (1.28)).

The class-specific confidence Pc.i/ for instance xi is the ratio of total weight
of all classifiers that choose class !c (for instance xi /, to the total weight of all
classifiers that have seen class !c . Hence, Pc.i/ represents the collective confidence
of classifiers trained on class !c in choosing class !c for instance xi . A high value
of Pc.i/, close to 1, indicates that classifiers trained to recognize class !c have in
fact overwhelmingly picked class !c , and hence those that were not trained on !c

should not vote (or reduce their voting weight) for that instance.
Extensive experiments with Learn CC.NC showed that the algorithm can very

quickly learn new classes when they are present, and in fact is also able to remember
a class, when it is no longer present in future data batches [46].
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1.4.2 Data Fusion

A common problem in many large-scale data analysis and automated decision
making applications is to combine information from different data sources that often
provide heterogeneous data. Diagnosing a disease from several blood or behavioral
tests, imaging results, and time series data (such as EEG or ECG) is such an
application. Detecting the health of a system or predicting weather patterns based
on data from a variety of sensors, or the health of a company based on several
sources of financial indicators are other examples of data fusion. In most data
fusion applications, the data are heterogeneous, that is, they are of different format,
dimensionality, or structure: some are scalar variables (such as blood pressure,
temperature, humidity, speed), some are time series data (such as electrocardiogram,
stock prices over a period of time, etc.), some are images (such as MRI or PET
images, 3D visualizations, etc.).

Ensemble systems provide a naturally suited solution for such problems:
individual classifiers (or even an ensemble of classifiers) can be trained on each data
source and then combined through a suitable combiner. The stacked generalization
or MoEs structures are particularly well suited for data fusion applications. In both
cases, each classifier (or even a model of ensemble of classifiers) can be trained on a
separate data source. Then, a subsequent meta-classifier or a gating network can be
trained to learn which models or experts have better prediction accuracy, or which
ones have learned which feature space. Figure 1.5 illustrates this structure.

A comprehensive review of using ensemble-based systems for data fusion, as
well as detailed description of Learn CC implementation for data fusion—shown
to be quite successful on a variety of data fusions problems—can be found in
[47]. Other ensemble-based fusion approaches include combining classifiers using
Dempster–Shafer-based combination [48–50], ARTMAP [51], genetic algorithms
[52], and other combinations of boosting/voting methods [53–55]. Using diversity
metrics for ensemble-based data fusion is discussed in [56].

1.4.3 Feature Selection and Classifying with Missing Data

While most ensemble-based systems create individual classifiers by altering the
training data instances—but keeping all features for a given instance—individual
features can also be altered by using all of the training data available. In such a
setting, individual classifiers are trained with different subsets of the entire feature
set. Algorithms that use different feature subsets are commonly referred to as
random subspace methods, a term coined by Ho [36]. While Ho used this approach
for creating random forests, the approach can also be used for feature selection as
well as diversity enhancement.

Another interesting application of RSM-related methods is to use the ensemble
approach to classify data that have missing features. Most classification algorithms
have matrix multiplications that require the entire feature vector to be available.
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Fig. 1.5 Ensemble systems for data fusion

However, missing data is quite common in real-world applications: bad sensors,
failed pixels, unanswered questions in surveys, malfunctioning equipment, medical
tests that cannot be administered under certain conditions, etc. are all common
scenarios in practice that can result in missing attributes. Feature values that are
beyond the expected dynamic range of the data due to extreme noise, signal
saturation, data corruption, etc. can also be treated as missing data.

Typical solutions to missing features include imputation algorithms where the
value of the missing variable is estimated based on other observed values of that
variable. Imputation-based algorithms (such as expectation maximization, mean
imputation, k-nearest neighbor imputation, etc.), are popular because they are
theoretically justified and tractable; however, they are also prone to significant
estimation errors particularly for large dimensional and/or noisy datasets.

An ensemble-based solution to this problem was offered in Learn CC.MF [57]
(MF for M issing F eatures), which generates a large number of classifiers, each of
which is trained using only random subsets of the available features. The instance
sampling distribution in other versions of Learn CC algorithms is replaced with a
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Fig. 1.6 (a) Training
classifiers with random
subsets of the features; (b)
classifying an instance
missing feature f2. Only
shaded classifiers can be used

feature sampling distribution, which favors those features that have not been well
represented in the previous classifiers’ feature sets. Then, a data instance with
missing features is classified using the majority voting of only those classifiers
whose feature sets did not include the missing attributes. This is conceptually
illustrated in Fig. 1.6a, which shows 10 classifiers, each trained on three of the
six features available in the dataset. Features that are not used during training
are indicated with an “X.” Then, at the time of testing, let us assume that feature
number 2, f2, is missing. This means that those classifiers whose training feature
sets included f2, that is, classifiers C2, C5, C7, and C8, cannot be used in classifying
this instance. However, the remaining classifiers, shaded in Fig. 1.6b, did not use f2

during their training, therefore those classifiers can still be used.
Learn CC.MF is listed in Algorithm 5 below. Perhaps the most important

parameter of the algorithm is nof, the number of features, out of a total of f , to
be used to train each classifier. Choosing a smaller nof allows a larger number of
missing features to be accommodated by the algorithm. However, choosing a larger
nof usually improves individual classifier performances. The primary assumption
made by Learn CC.MF is that the dataset includes a redundant set of features,
and the problem is at least partially solvable using a subset of the features, whose
identities are unknown to us. Of course, if we knew the identities of those features,
we would only use those features in the first place.

A theoretical analysis of this algorithm, including probability of finding at least
one useable classifier in the absence of m missing features, when each classifier is
trained using nof of a total of f features, as well as the number of classifiers needed
to guarantee at least one useable classifier are provided in [57].
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Algorithm 5 LearnCC.MF

Inputs: Sentinel value sen, BaseClassifier; the number of classifiers, T .
Training dataset S D fxi , yi g, i D 1, . . . , N , with N instances of f features from
c classes, number of features used to train each classifier, nof ;
Initialize feature distribution D1.j / D 1/f , 8j , j D 1, . . . , f ;
Do for t D 1, . . . , T:

1. Normalize Dt to make it a proper distribution.
2. Draw nof features from Dt to form selected features: Fselection.t/.
3. Call BaseClassifier to train classifier Ct using only those features in

Fselection.t/.
4. Add Ct to the ensemble "
5. Obtain Perf (t/ the classification performance on S . If Perf (t) < 1/c, discard

Ct and go to Step 2.
6. Update feature distribution

DtC1

�
Fselection .t/

	 D .nof =f / �Dt

�
Fselection .t/

	
(1.31)

End

Using trained ensemble
Given test/field data z,

1. Determine missing features M.z/ Darg(z.j / DDsen), 8j

2. Obtain ensemble decision as the class with the most votes among the outputs
of classifiers C �

t trained on the nonmissing features:

".z/ D arg maxy

X
t WC �

t .z/Dy

��
M.z) \ Fselection.t/ 6D ;�� (1.32)

1.4.4 Learning from Nonstationary Environments:
Concept Drift

Much of computational intelligence literature is devoted to algorithms that can learn
from data that are assumed to be drawn from a fixed but unknown distribution.
For a great many applications, however, this assumption is simply not true. For
example, predicting future weather patterns from current and past climate data,
predicting future stock returns from current and past financial data, identifying e-
mail spam from current and past e-mail content, determining which online adds
a user will respond based on the user’s past web surfing record, predicting future
energy demand and prices based on current and past data are all examples of
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applications where the nature and characteristics of the data—and the underlying
phenomena that generate such data—may change over time. Therefore, a learning
model trained at a fixed point in time—and a decision boundary generated by such a
model—may not reflect the current state of nature due to a change in the underlying
environment. Such an environment is referred to as a nonstationary environment,
and the problem of learning in such an environment is often referred to as learning
concept drift. More specifically, given the Bayes posterior probability of class !

that a given instance x belongs, P (!jx/ D P.xj!)P (!)/P.x/, concept drift can be
formally defined as any scenario where the posterior probability changes over time,
i.e., P tC1(!jx/ ¤ P t (!jx/.

To be sure, this is a very challenging problem in machine learning because the
underlying change may be gradual or rapid, cyclical or noncyclical, systematic or
random, with fixed or variable rate of drift, and with local or global activity in the
feature space that spans the data. Furthermore, concept drift can also be perceived,
rather than real, as a result of insufficient, unknown, or unobservable features in a
dataset, a phenomenon known as hidden context [58]. In such a case, an underlying
phenomenon provides a true and static description of the environment over time,
which, unfortunately, is hidden from the learner’s view. Having the benefit of
knowing this hidden context would make the problem to have a fixed (and hence
stationary) distribution.

Concept drift problems are usually associated with incremental learning or
learning from a stream of data, where new data become available over time.
Combining several authors’ suggestions for desired properties of a concept drift
algorithms, Elwell and Polikar provided the following guidelines for addressing
concept drift problems: (1) any given instance of data—whether provided online
or in batches—can only be used once for training (one-pass incremental learning);
(2) knowledge should be labeled with respect to its relevance to the current
environment, and be dynamically updated as new data continuously arrive; (3) the
learner should have a mechanism to reconcile when existing and newly acquired
knowledge conflict with each other; (4) the learner should be able—not only to
temporarily forget information that is no longer relevant to the current environment
but also to recall prior knowledge if the drift/change in the environment follow a
cyclical nature; and (5) knowledge should be incrementally and periodically stored
so that it can be recalled to produce the best hypothesis for an unknown (unlabeled)
data instance at any time during the learning process [59].

Earliest examples of concept drift algorithms use a single classifier to learn
from the latest batch of data available, using some form of windowing to control
the batch size. Successful examples of this instance selection approach include
STAGGER [60] and FLORA [58] algorithms, which use a sliding window to
choose a block of (new) instances to train a new classifier. The window size can
be dynamically updated using a “window adjustment heuristic,” based on how fast
the environment is changing. Instances that fall outside of the window are then
assumed irrelevant and hence the information carried by them are irrecoverably
forgotten. Other examples of this window-based approach include [61–63], which
use different drift detection mechanisms or base classifiers. Such approaches are
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often either not truly incremental as they may access prior data, or cannot handle
cyclic environments. Some approaches include a novelty (anomaly) detection to
determine the precise moment when changes occur, typically by using statistical
measures, such as control charts based CUSUM [64, 65], confidence interval on
error [66, 67], or other statistical approaches [68]. A new classifier trained on new
data since the last detection of change then replaces the earlier classifier(s).

The ensemble-based algorithms provide an alternate approach to concept drift
problems. These algorithms generally belong to one of three categories [69]:
(1) update the combination rules or voting weights of a fixed ensemble, such as
[70, 71]; an approach loosely based on Littlestone’s Winnow [72] and Freund and
Schapire’s Hedge (a precursor of AdaBoost) [4]; (2) update the parameters of
existing ensemble members using an online learner [66, 73]; and/or (3) add new
members to build an ensemble with each incoming dataset. Most algorithms fall into
this last category, where the oldest (e.g., Streaming Ensemble Algorithm (SEA) [74]
or Recursive Ensemble Approach (REA) [75]) or the least contributing ensemble
members are replaced with new ones (as in Dynamic Integration [76], or Dynamic
Weighted Majority (DWM) [77]). While many ensemble approaches use some form
of voting, there is some disagreement on whether the voting should be weighted,
e.g., giving higher weight to a classifier if its training data were in the same region
as the testing example [76], or unweighted, as in [78, 79], where the authors argue
that weights based on previous data, whose distribution may have changed, are
uninformative for future datasets. Other efforts that combine ensemble systems
with drift detection include Bifet’s adaptive sliding window (ADWIN) [80,81], also
available within the WEKA-like software suite, Massive Online Analysis (MOA)
at [82].

More recently, a new addition to Learn CC suite of algorithms, Learn CC.NSE,
has been introduced as a general framework to learning concept drift that does not
make any restriction on the nature of the drift. Learn CC.NSE (for NonStationary
Environments) inherits the dynamic distribution-guided ensemble structure and
incremental learning abilities of all Learn CC algorithms (hence strictly follows
the one-pass rule). Learn CC.NSE trains a new classifier for each batch of data
it receives, and combines the classifiers using a dynamically weighted majority
voting. The novelty of the approach is in determining the voting weights, based on
each classifier’s time-adjusted accuracy on current and past environments, allowing
the algorithm to recognize, and act accordingly, to changes in underlying data
distributions, including possible reoccurrence of an earlier distribution [59].

The Learn CC.NSE algorithm is listed in Algorithm 6, which receives the training
dataset Dt D ˚

xt
i 2 X Iyt

i 2 Y



; i D 1; :::; mt , at time t . Hence xt
i is the i th

instance of the dataset, drawn from an unknown distribution P t (x,y/, which is the
currently available representation of a possibly drifting distribution at time t . At time
t + 1 , a new batch of data is drawn from P tC1.x,y/. Between any two consecutive
batches, the environment may experience a change whose rate is not known, nor
assumed to be constant. Previously seen data are not available to the algorithm,
allowing Learn CC.NSE to operate in a truly incremental fashion.
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Algorithm 6 LearnCC.NSE

Input: For each dataset Dt tD 1,2, . . . .
Training data fxt .i/ 2 X ; yt .i/ 2 Y = f1; : : :, cgg, i D 1, . . . , mt ; Supervised
learning algorithm BaseClassifier; Sigmoid parameters a (slope) and b (infliction
point).
Do for t = 1, 2, . . . .

If t D1, Initialize D1.i/ = wt .i / = 1=m1, 8i , Go to step 3. Endif

1. Compute error of the existing ensemble on new data

Et D
Xmt

iD1
1
ı

mt � ��H t�1
�
xt .i/

	 ¤ yt .i/
��

(1.33)

2. Update and normalize instance weights

wt
i D

1

mt
�
�

Et; H t�1 .xt .i// D yt .i/

1; otherwise
(1.34)

Set

Dt D wt

�Xmt

iD1
wt .i /) Dt (1.35)

is a distribution.
3. Call BaseClassifier with Dt , obtain ht :X ! Y:

4. Evaluate all existing classifiers on new data Dt

"t
k D

Xmt

iD1
Dt .i/

��
hk

�
xt .i/

	 ¤ yt .i/
��

for k D 1, : : : ,t (1.36)

If "t
kDt > 1/2, generate a new ht . If "t

k<t > 1/2, set "t
k D 1/2,

ˇt
k D "t

k/(1 � "t
k), for k D 1, ... , t ! 0 � ˇt

k � 1 (1.37)

5. Sigmoid-based time averaging of normalized errors of hk : For a, b 2 R

!t
k D 1

.�
1 + e�a.t�k�b/

�
, !t

k D !t
k

�Xt�k

j D0
!

t�j

k (1.38)

Ňt
k D

Xt�k

j D0
!

t�j

k ˇ
t�j

k ; for k = 1, ... , t (1.39)

6. Calculate classifier voting weights

W t
k D log

�
1
ı Ňt

k

	
; for k D 1; :::; t (1.40)
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7. Compute the composite hypothesis (the ensemble decision) as

H t .xt .i// D arg max
c

X
k

W t
k �

��
hk

�
xt .i/

	 D c
��

(1.41)

End Do.
Return the final hypothesis as the current composite hypothesis.

The algorithm is initialized with a single classifier on the first batch of data.
With the arrival of each subsequent batch of data, the current ensemble, H t�1—
the composite hypothesis of all individual hypotheses previously generated, is first
evaluated on the new data (Step 1 in Algorithm 6). In Step 2, the algorithm identifies
those examples of the new environment that are not recognized by the existing
ensemble, H t�1, and updates the penalty distribution Dt . This distribution is used
not for instance selection, but rather to assign penalties to classifiers on their ability
to identify previously seen or unseen instances. A new classifier ht , is then trained
on the current training data in Step 3. In Step 4, each classifier generated thus far
is evaluated on the training data weighted with respect to the penalty distribution.
Note that since classifiers are generated at different times, each classifier receives a
different number of evaluations: at time t , ht receives its first evaluation, whereas
h1 is evaluated for t th time. We use "t

k; k D 1; :::; t to denote the error of hk—
the classifier generated at time step k—on dataset Dt . Higher weight is given to
classifiers that correctly identify previously unknown instances, while classifiers
that misclassify previously known data are penalized. Note that if the newest
classifier has a weighted error greater than 1=2, i.e., if "t

kDt � 1=2, this classifier is
discarded and replaced with a new classifier. Older classifiers, with error "t

k<t � 1=2,
however, are retained but have their error saturated at 1=2 (which later corresponds
to zero vote on that environment). The errors are then normalized, creating ˇt

k that
fall in the [0, 1] range.

In Step 5, classifier error is further weighted (using a sigmoid function) with
respect to time so that recent competence (error rate) is considered more heavily.
Such a sigmoid-based weighted averaging also serves to smooth out potential large
swings in classifiers errors that may be due to noisy data rather than actual drift.
Final voting weights are determined in Step 6 as log-normalized reciprocals of
the weighted errors: if a classifier performs poorly on the current environment,
it receives little or no weight, and is effectively—but only temporarily—removed
from the ensemble. The classifier is not discarded; however, it is recalled through
assignment of higher voting weights if it performs well on future environments.
Learn CC.NSE forgets only temporarily, which is particularly useful in cyclical
environments. The final decision is obtained in Step 7 as the weighted majority
voting of the current ensemble members.

Learn CC.NSE has been evaluated and benchmarked against other algorithms,
on a broad spectrum of real-world as well as carefully designed synthetic datasets—
including gradual and rapid drift, variable rate of drift, cyclical environments, as
well as environments that introduce or remove concepts. These experiments and
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their results are reported in [59], which shows that the algorithm can serve as a
general framework for learning concept drift regardless of the environment that
characterizes the drift.

1.4.5 Confidence Estimation

In addition to the various machine learning problems described above, ensemble
systems can also be used to address other challenges that are difficult or impossible
using a single classifier-based systems.

One such application is to determine the confidence of the (ensemble-based)
classifier in its own decision. The idea is extremely intuitive as it directly follows
the use of ensemble systems in our daily lives. Consider reading user reviews of a
particular product, or consulting the opinions of several physicians on the risks of a
particular medical procedure. If all—or at least most—users agree in their opinion
that the product reviewed is very good, we would have higher confidence in our
decision to purchase that item. Similarly, if all physicians agree on the effectiveness
of a particular medical operation, then we would feel more comfortable with that
procedure. On the other hand, if some of the reviews are highly complementary,
whereas others are highly critical that casts doubt in our decision to purchase that
item. Of course, in order for our confidence in the “ensemble of reviewers” to be
valid, we must believe that the reviewers are independent of each other, and indeed
independently review the items. If certain reviewers were writing reviews based on
other reviewers’ reviews they read, the confidence based on the ensemble becomes
meaningless.

This idea can be naturally extended to classifiers. If considerable majority of
the classifiers in an ensemble agree on their decisions, than we can interpret that
outcome as ensemble having higher confidence in its decision, as opposed to only
a mere majority of classifiers choosing a particular class. In fact, under certain
conditions, the consistency of the classifier outputs can also be used to estimate
the true posterior probability of each class [28]. Of course, similar to the examples
given above, the classifier decisions must be independent for this confidence—and
the posterior probabilities—to be meaningful.

1.5 Summary

Ensemble-based systems provide intuitive, simple, elegant, and powerful solutions
to a variety of machine learning problems. Originally developed to improve
classification accuracy by reducing the variance in classifier outputs, ensemble-
based systems have since proven to be very effective in a number of problem
domains that are difficult to address using a single model-based system.
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A typical ensemble-based system consists of three components: a mechanism
to choose instances (or features), which adds to the diversity of the ensemble; a
mechanism for training component classifiers of the ensemble; and a mechanism to
combine the classifiers. The selection of instances can either be done completely
at random, as in bagging, or by following a strategy implemented through a
dynamically updated distribution, as in boosting family of algorithms. In general,
most ensemble-based systems are independent of the type of base classifier used
to create the ensemble, a significant advantage that allows using a specific type of
classifier that may be known to be best suited for a given application. In that sense,
ensemble-based systems are also known as algorithm-free-algorithms.

Finally, a number of different strategies can be used to combine the classifiers,
though sum rule, simple majority voting and weighted majority voting are the most
commonly used ones due to certain theoretical guarantees they provide.

We also discussed a number of problem domains on which ensemble systems can
be used effectively. These include incremental learning from additional data, feature
selection, addressing missing features, data fusion, and learning from nonstationary
data distributions. Each of these areas has several algorithms developed to address
the relevant specific issue, which are summarized in this chapter. We also described
a suite of algorithms, collectively known as Learn CC family of algorithms that is
capable of addressing all of these problems with proper modifications to the base
approach: all Learn CC algorithms are incremental algorithms that use an ensemble
of classifiers trained on the current data only, then combined through majority
voting. The individual members of Learn CC differ from each other according to
the particular distribution update rule along with a creative weight assignment that
is specific to the problem.
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81. A. Bifet, E. Frank, G. Holmes, and B. Pfahringer, “Accurate ensembles for data streams:
Combining restricted Hoeffding trees using stacking,” 2nd Asian Conference on Machine
Learning in Journal of Machine Learning Research, vol. 13, Tokyo, 2010

82. A. Bifet, MOA: Massive Online Analysis, Available at: http://moa.cs.waikato.ac.nz/.
Lastaccessed:7/22/2011

http://moa.cs.waikato.ac.nz/. Last accessed: 7/22/2011
http://moa.cs.waikato.ac.nz/. Last accessed: 7/22/2011


Chapter 2
Boosting Algorithms: A Review of Methods,
Theory, and Applications

Artur J. Ferreira and Mário A.T. Figueiredo

2.1 Introduction

Boosting is a class of machine learning methods based on the idea that a
combination of simple classifiers (obtained by a weak learner) can perform better
than any of the simple classifiers alone. A weak learner (WL) is a learning algorithm
capable of producing classifiers with probability of error strictly (but only slightly)
less than that of random guessing (0.5, in the binary case). On the other hand, a
strong learner (SL) is able (given enough training data) to yield classifiers with
arbitrarily small error probability.

An ensemble (or committee) of classifiers is a classifier build upon some
combination of WLs. The strategy of boosting, and ensembles of classifiers, is to
learn many weak classifiers and combine them in some way, instead of trying to
learn a single strong classifier. This idea of building ensembles of classifiers has
gained interest in the last decade [67]; the rationale is that it may be easier to train
several simple classifiers and combine them into a more complex classifier than to
learn a single complex classifier. For instance, instead of training a large neural
network (NN), we may train several simpler NNs and combine their individual
outputs in order to produce the final output (as illustrated in Fig. 2.1).

Letting HmWX ! f�1; C1g be the mth weak binary classifier (for m D
1; : : : ; M ), and x 2 X some input pattern to be classified, there are many ways
to combine the outputs H1.x/; : : : ; HM .x/ into a single class prediction [67].
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Fig. 2.1 The concept of ensemble of classifiers. The outputs of the weak learners Hm.x/ with
m 2 f1; : : : ; M g are combined to produce the output of the ensemble of classifiers given by H.x/

For example, assuming that the classifiers err independently of each other, a majority
vote combination should yield a lower probability of error than any of the individual
classifiers. Considering a weighted linear combination of the outputs of the weak
classifiers, the ensemble prediction function H W X ! f�1; C1g is given by

H.x/ D sign

 
MX

mD1

˛m Hm.x/

!
; (2.1)

where ˛1; : : : ; ˛M is a set of weights (a simple majority vote results if all the weights
are equal).

Among the many different ways in which ensembles of classifiers can be learned
and combined [67], boosting techniques exhibit, in addition to good practical per-
formance, several theoretical and algorithmic features that makes them particularly
attractive [58, 82, 98]. Essentially, boosting consists of repeatedly using the base
weak learning algorithm, on differently weighted versions of the training data,
yielding a sequence of weak classifiers that are combined as in (2.1). The weighting
of each instance in the training data, at each round of the algorithm, depends on
the accuracy of the previous classifiers, thus allowing the algorithm to focus its
attention on those samples that are still incorrectly classified. The several variants of
boosting algorithms differ in their choice of base learners and criterion for updating
the weights of the training samples. AdaBoost (which stands for adaptive boosting)
is arguably the best-known boosting algorithm, and was responsible for sparking the
explosion of interest in this class of algorithms that happened after the publication
of the seminal works of Freund and Schapire [47–50],

2.1.1 Chapter Outline

The remaining sections of this chapter are organized as follows. Section 2.2
addresses the foundations and origins of boosting algorithms, as a class of methods
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to improve the accuracy of learning algorithms, by building ensembles of classifiers;
the connection of boosting with other machine learning techniques, such as
bootstrap and bagging is mentioned. Section 2.3 describes AdaBoost and discusses
some of its theoretical properties, regarding training error (TE), generalization
error (GE), and the problem of overfitting. In Section 2.4, we describe variants of
AdaBoost and their properties, including extensions for multiclass problems, while
boosting algorithms for semi-supervised learning (SSL) are discussed in Section 2.5.
Section 2.6 discusses several successful applications of batch and online boosting
algorithms and presents an experimental evaluation of some boosting algorithms,
compared to other machine learning techniques on standard benchmark datasets.
Section 2.7 provides a summary and a discussion on boosting algorithms. Finally,
Section 2.8 ends the chapter with some bibliographic and historical remarks.

2.2 The Origins of Boosting and Adaptive Boosting

2.2.1 Bootstrapping and Bagging

Bootstrapping [37, 38] is a general purpose sample-based statistical method in
which several (nondisjoint) training sets are obtained by drawing randomly, with
replacement, from a single base dataset. In a dataset with N samples, each instance
is selected with probability 1=N ; consequently, after N draws (with large N ), the
probability that a given instance was not selected is

�
1 � 1

N

�N

� exp.�1/ � 0:368I (2.2)

the validity of this approximation is illustrated in Fig. 2.2, showing that it is quite
accurate even with only a moderately large N . This implies that each sample
contains roughly 63.2% of the instances.

Classically, bootstrapping is used to infer some statistic T .P / about a (say
infinitely large) population P , from N samples thereof: Z D fz1; : : : ; zN g. The
idea is to obtain B sets Z�b � Z, for b D 1; : : : ; B , each containing N random
samples (with replacement) from Z, from which B estimates of T .P / are obtained.
These estimates are then averaged into a final estimate; it is also possible to obtain
variance estimates or confidence intervals. The procedure is formally described in
Algorithm 1.

Bagging (which stands for bootstrap aggregation [11]) is a technique which
uses bootstrap sampling to reduce the variance and/or improve the accuracy of
some predictor (it may be used in classification and regression). Consider a size-
N dataset Z D fz1; z2; : : : ; zN g, where now zi D .xi; yi /, where yi is a class label,
in classification problems, or a real number, in regression problems. The rationale
of bagging is to learn a set of B predictors (each from a bootstrap sample Z�b � Z,
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Fig. 2.2 The Bootstrap procedure: probability of not selecting a training sample after N draws
and its approximation exp.�1/

Algorithm 1 Bootstrap Procedure
Input: Size-N sample Z D fz1; z2; : : : ; zN g of a (potentially infinite) population P .

B , number of bootstrap samples.
Output: EstimatebT .P / of the population statistic.

1: for b D 1 to B do
2: Draw, with replacement, N samples from Z, obtaining the bth bootstrap sample Z�

b .

3: Compute, for each sample Z�

b , the estimate of the statisticbT .Z�

b /.
4: end for
5: Compute the bootstrap estimatebT .P / as the average ofbT .Z�

1 /,. . . ,bT .Z�

B /.

6: Compute the accuracy of the estimate, using, e.g., the variance ofbT .Z�

1 /,. . . ,bT .Z�

B /.

for b D 1; : : : ; B) and then produce a final predictor by combining (by averaging,
in regression, or majority voting, in classification) this set of predictors. The
combination of multiple predictors decreases the expected error because it reduces
the variance component of the bias–variance decomposition [58]. The reduction
on this variance component is proportional to the number of classifiers applied
in the ensemble. The bagging procedure, for binary classification, is described in
Algorithm 2.

As compared to the process of learning a classifier in a conventional way, that is,
from the full training set, bagging has two main advantages:

• increases classifier stability and accuracy;
• reduces classifier variance, in terms of the bias–variance decomposition [58].
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Algorithm 2 Bagging Procedure for Classification
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi ; yi /, where xi 2X and yi 2 f�1;C1g.

B , number of bootstrap samples.
Output: H WX ! f�1;C1g, the final classifier.

1: for b D 1 to B do
2: Draw, with replacement, N samples from Z, obtaining the bth bootstrap sample Z�

b .
3: From each bootstrap sample Z�

b , learn classifier Hb .
4: end for
5: Produce the final classifier by a majority vote of H1; : : : ; HB , that is, H.x/ D

sign

 
BX

bD1

Hb.x/

!
:

Fig. 2.3 The bagging approach to classification. Using bootstrap, we produce several training
samples; each of these samples is fed into a weak learner. The final classification decision is
produced by a majority vote on the weak learners output

The use of the bagging technique improves the classification results whenever
the base classifiers are unstable, this being the main reason why the bagging
approach works well for classification. Figure 2.3 depicts the bagging approach for
classification.

For further reading on bagging, see [12, 13, 95, 139, 140]. In [139], the authors
argue that for very weak learners (e.g., decision stumps, which are tree classifier
with only one inner node), the base classifiers built from bootstrap samples are
strongly correlated. As a consequence, a simple bagged classifier with these very
weak learners has very little improvement compared to a single classifier trained
from the same data. To overcome this problem, they propose the local lazy learning
bagging (LLLB) approach, where base learners are trained from a small subset
surrounding each test instance. The experimental results on real-world datasets show
that the LLLB method significantly outperforms standard bagging.
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2.2.2 Weak and Strong Learners

Weak and strong learning are fundamental concepts at the heart of boosting
algorithms, so we briefly review their formal definitions. These concepts are rooted
in the theory of PAC (probably approximately correct) learning [114], where they
are defined as follows. Consider an hypothesis, i.e., a classification rule f W X !
f�1; C1g, such that f 2 F , where F is some class of functions from X to
f�1; C1g. Consider also a set of examples of that hypothesis, i.e., a set of pairs
f.xi ; yi /; i D 1; : : :; N g such that yi D f .xi / and the xi are samples of some
distribution P . A strong learner is capable of, given enough data, producing an
arbitrarily good classifier with high probability, that is, for every P , f 2 F ,
" � 0, and ı � 1=2, it outputs, with probability no less than 1 � ı, a classifier
h W X ! f�1; C1g satisfying PP Œh.x/ ¤ f .x/� � ": Furthermore, the time
complexity of the algorithm can be at most polynomial in 1=", 1=ı, N , and the
dimension of X [82].

A WL is formally defined in a similar way as a strong one, but with weaker
quantification with respect to " and ı. Given a particular (rather than “for every”)
pair "0 � 0, and ı0 � 1=2, a WL outputs, with probability no less than 1 � ı0, a
classifier h W X ! f�1; C1g satisfying PP Œh.x/ ¤ f .x/� � "0. Underlying the
idea of boosting is the fact, proved by Schapire [95] that it is possible to obtain a SL
by combining WLs.

2.2.3 Boosting Algorithms

The first boosting procedure was proposed by Schapire in [95], where the key result
is that weak and strong learnability are equivalent, in the sense that strong learning
can be performed by combining WLs. The boosting procedure proposed in [95] is
described in detail in Algorithm 3.

Algorithm 3 Boosting Procedure for Classification
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.
Output: A classifier H WX ! f�1;C1g.
1: Randomly select, without replacement, L1 < N samples from Z to obtain Z�

1 .
2: Run the WL on Z�

1 , yielding classifier H1.
3: Select L2 < N samples from Z, with half of the samples misclassified by H1, to obtain Z�

2 .
4: Run the WL on Z�

2 , yielding classifier H2.
5: Select all samples from Z on which H1 and H2 disagree, producing Z�

3 .
6: Run the WL on Z�

3 , yielding classifier H3.

7: Produce the final classifier as a majority vote: H.x/ D sign

 
3X

bD1

Hb.x/

!
:



2 Boosting Algorithms: A Review of Methods, Theory, and Applications 41

Fig. 2.4 A graphical idea of the first boosting approach proposed in [95]. Notice that each learner
can be itself learned by the boosting algorithm in a recursive fashion

As can be seen in Algorithm 3, the training set is randomly divided without
replacement into three partitions, Z�1 , Z�2 , and Z�3 . For a given instance, if the first
two classifiers (H1 and H2) agree on the class label, this is the final decision for
that instance. The set of instances on which they disagree defines the partition Z�3 ,
which is used to learn H3. Schapire has shown that this learning method is strong,
in the sense defined above. Moreover, the error can be further reduced by using
this approach recursively, that is, each learner can itself be obtained by a boosting
procedure. Figure 2.4 illustrates the boosting approach.

After this proposal by Schapire, Freund [44] proposed a new boosting algorithm
based on, and improving, the ideas presented in [95]. That algorithm improves the
accuracy of algorithms for learning binary classifiers, by combining a large number
of classifiers, each of which is obtained by running the given learning method on
a different set of examples. As in [95], Freund’s new proposals also suffered from
several drawbacks, namely the need for a very large training set, due to the fact that
this set is divided into subsets.

2.2.4 Relationship Between Boosting, Bagging,
and Bootstrapping

Figure 2.5 shows the connection between bootstrapping, bagging, and boosting,
focusing on what they produce and how they handle the training data. The figure
emphasizes the fact that these three techniques are all built upon random sampling,
being that bootstrapping and bagging perform sampling with replacement while
boosting does not. Bagging and boosting have in common the fact that both provide
final classifiers that are majority votes of the individual classifiers.

In [29], a comparison of the effectiveness of randomization, bagging, and
boosting for improving the performance of the decision-tree algorithm C4.5 [88] is
presented. The experimental results show that for cases with little or no classification
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Fig. 2.5 Bootstrapping, bagging, and boosting: what they yield and how they handle the training
data

noise, randomization is competitive with (and perhaps slightly superior to) bagging
but not as accurate as boosting. For situations with substantial classification noise,
bagging is much better than boosting, and sometimes better than randomization.

2.3 The AdaBoost Algorithm

After their initial separate work on boosting algorithms, Freund and Schapire
proposed the adaptive boosting (AdaBoost) algorithm [47], [48], [50]. The key idea
behind AdaBoost is to use weighted versions of the same training data instead of
randomly subsamples thereof. The same training set is repeatedly used and, for this
reason, it does not need to be very large, unlike earlier boosting methods.

The AdaBoost algorithm is now a well known and deeply studied method to build
ensembles of classifiers with very good performance [58]. The algorithm learns a set
of classifiers, using a WL, in order to produce the final classifier of the form (2.1).
The weak classifiers1 are obtained sequentially, using reweighted versions of the
training data, with the weights depending on the accuracy of the previous classifiers.
The training set is always the same at each iteration, with each training instance
weighted according to its (mis)classification by the previous classifiers. This allows
the WL at each iteration to focus on patterns that were not well classified by the
previous weak classifiers. It is important to chose WLs to obtain the base classifiers,
allowing them to learn without decreasing significantly the weight of the previously
correctly classified instances. If the base learner is too strong, it may achieve high
accuracy, leaving only outliers and noisy instances with significant weight to be

1We refer to a classifier learned by a WL as a weak classifier.
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Fig. 2.6 Graphical idea of the adaptive boosting algorithm (adapted from [58]). Each weak learner
is trained on a different weighted version of the training data sample. There is no sampling of the
training data and the weight of each instance for the following round depends on the performance
of the previous learner

Algorithm 4 (Discrete) AdaBoost algorithm for binary classification
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.

M , the maximum number of classifiers.
Output: A classifier H WX ! f�1;C1g.
1: Initialize the weights w.1/

i D 1=N , i 2 f1; : : : ; N g, and set m D 1.
2: while m �M do
3: Run weak learner on Z, using weights w

.m/
i , yielding classifier Hm WX ! f�1;C1g.

4: Compute errm D
NX

iD1

w
.m/
i h .�yi Hm.xi//, the weighted error of Hm.

5: Compute ˛m D 1
2

log
�

1�errm

errm

�
. f/* Weight of weak classifier. */g

6: For each sample i D 1; : : :; N , update the weight v.m/
i D w.m/

i exp.�˛m yi Hm.xi//.
7: Renormalize the weights: compute Sm D PN

jD1 vj and, for i D 1; : : :; N ,

w.mC1/
i D v.m/

i

.
Sm.

8: Increment the iteration counter: m mC 1

9: end while

10: Final classifier: H.x/ D sign

0
@ MX

jD1

˛j Hj .x/

1
A.

learned in the following rounds. Figure 2.6 depicts the structure of AdaBoost, which
is described in detail in Algorithm 4.

The function h W R ! f0; 1g used in line 4 of the algorithm is the Heaviside
function, defined as h.x/ D 1, if x � 0, and h.x/ D 0, if x < 0. Consequently,
since both yi and Hm.xi/ take values in f�1; C1g, we have that h .�yi Hm.xi// D 1,
if yi ¤ Hm.xi/, and h .�yi Hm.xi// D 0, if yi D Hm.xi/, and errm is the weighted
error rate of the mth classifier.
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Line 3 requires some explanation: what does it mean to run a weak learning
algorithm on a weighted version of the training set? It means that the goal of the
WL is to obtain a classifier, say Hm, belonging to a given family of classifiers H ,
that satisfies

NX
iD1

wi h .�yi Hm.xi// � 1

2
� "; (2.3)

for some small positive ". Notice that only if wi D 1=N , for i D 1; : : :; N (e.g.,
at the first iteration of AdaBoost) does the left hand side of (2.3) coincides with
the classical error rate on the training set. The existence of such weak classifiers
is an important ingredient of boosting, and the interested reader is referred to [82]
for more details. Notice that the weakness of the classifier is usually controlled by
letting H contain only simple classifiers; for example, when X D R

d , the family
H may contain only linear rules of the form H.x/ D sign.uT x C r/, where u 2
R

d and r 2 R, which is sometimes known as a perceptron, or rules based on a
single component of the input, i.e., of the form H.x/ D sign.u xj C t/, where
u 2 f�1; C1g and t 2 R, which is called a decision stump.

Notice that the AdaBoost algorithm can actually handle weak classifiers with
weighted error rate larger than 1/2; of course, by simply inverting the output of
such a classifier, we obtain a classifier with weighted error rate less than 1/2. Such
an inversion is automatically performed by AdaBoost, because if errm > 1=2,
the corresponding weight ˛m is negative, as is clear from its expression in line 5
of Algorithm 4. Figure 2.7 shows how ˛m evolves as a function of the weighted
classification error errm for each weak learner.

Table 2.1 shows the connection between the boosting algorithm (Algorithm 3)
and AdaBoost (Algorithm 4). We compare these algorithms in terms of how the
training data is processed, the number of classifiers and how the final decision is
produced.
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Table 2.1 Summary of the main differences between Algorithms 3 (Boosting) and 4
(AdaBoost), regarding how training data is used, the number of samples, the number of
classifiers, and the decision mechanism

Boosting (Algorithm 3) AdaBoost (Algorithm 4)

Data usage Random sampling, no replacement Weighting (no sampling)
Number of samples Three One
Number of classifiers Three Up to M

Decision Majority vote Weighted majority vote

A key issue when using the weights for the instances, is that the following learner
is provided with more information about the importance of each instance and how
the previous learners were (or not) able to deal with that instance. This does not
happen in bagging nor boosting.

Notice that a straightforward consequence of the instance weighting scheme is
that, after the M AdaBoost rounds, the misclassified patterns assigned with higher
weights are “hard” patterns to learn; these patterns are probably outliers. This is a
kind of side effect of AdaBoost, which can be used for outlier detection on a given
training set.

The AdaBoost algorithm has also been extended for regression tasks. In [3], the
prediction error is compared against a threshold to mark it as an error or not and
then the AdaBoost version for classification is used. In [31], the probabilities kept
by the algorithm are modified based on the magnitude of the error; instances with
large error on the previous learners have a higher probability of being chosen to
train the following base learner. The median or weighted average is then applied to
combine the predictions of the different base learners.

2.3.1 Some Theoretical Properties

We now review several properties of AdaBoost that were shown by Freund and
Schapire [50, 100], namely the exponential decay of the TE rate.

The first result shows that the TE of the classifier obtained after M boosting
rounds is upper bounded by the product of the normalizing constants of the weights
of all the rounds, that is,

TE D 1

N

NX
iD1

h.�yi H.xi // �
MY

jD1

Sj ; (2.4)

where Sj is the normalizing constant used in line 7 at iteration j (the proof of this
result can be found in Appendix A).

The second result shows how the TE depends on the weighted error rates of the
weak classifiers (denoted errm). Assume that errm D 1=2 � �m, with �m > � > 0,
for all m D 1; : : : ; M . Then

TE � exp
��2 M �2

�
; (2.5)
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that is, the TE decreases exponentially with M , and does so at a rate that depends
on � (the proof of this result can be found in Appendix A).

The expected test error commonly addressed as the generalization error (GE)
also has an upper bound, as demonstrated in [50]. The GE of the final classifier is
upper bounded, with high probability by

TE C QO
 r

M d

N

!
; (2.6)

where d is the Vapnik–Chervonenkis (VC) [9, 117] dimension of the set of base
classifiers. This result shows that there is a trade-off controlled by the “richness”
or “complexity” of the base (weak) classifiers; “stronger” base classifiers allow
the TE to be lower, but correspond to a larger CV dimension; on the other hand,
simpler classifiers have a lower CV dimension, but require more boosting rounds to
decrease the TE.

It has been found empirically that the GE usually does not increase as the size of
ensemble becomes very large; moreover, it is often observed that the GE continues
to decrease even after the TE has reached zero (see Fig. 2.12). In [99], it is shown
that this behavior is related to the distribution of margins of the training examples
with respect to the generated voting classification rule. The margin of an example
is defined as the difference between the number of correct votes and the maximum
number of votes received by any incorrect label.

2.3.2 Different Views of AdaBoost

It has been argued that one explanation for the success of AdaBoost is its ability
to increase the margin between positive and negative examples [99]. This view
provides a connection between margin-based discriminative learning (as in support
vector machines—SVM [102]) and boosting.

The adaptive boosting techniques can be considered as a greedy optimization
method for minimizing the exponential loss function

1

N

NX
iD1

exp .�yi f .xi// D
NX

iD1

exp

 
�yi

MX
mD1

˛mHm.xi/

!
; (2.7)

by learning Hm and choosing the most adequate value of ˛m at each round. Detailed
analysis of boosting and different views of how this learning procedure behaves can
be found in [35, 50, 58, 80, 81].

In [21], a unified view of boosting and logistic regression [58] is described. These
learning problems are cast in terms of optimization of Bregman distances, due
to their high similarity under this framework. For both problems, new sequential
and parallel algorithms are proposed and their potential advantages over existing
methods are shown. A general proof of convergence for AdaBoost is also presented.
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Some connections of AdaBoost with game-theory, linear programming, logistic
regression, and estimation of probabilities and outliers are discussed in [97, 100].

An evaluation of bagging and boosting using both NNs and decision trees
as learners is carried out in [77]. The experimental results show two important
conclusions. The first is that, even though bagging almost always produces a
better classifier than any of its individual component classifiers and is relatively
impervious to overfitting, it does not generalize any better than a baseline NN
ensemble method. The second is that, although boosting is a powerful technique
that can usually produce better ensembles than bagging, it is more susceptible to
noise and overfitting.

In [42], AdaBoost is evaluated on synthetic and real data using two types of WLs:
generative classifiers and radial basis function classifiers. The AdaBoost algorithm
with these WLs shows good convergence properties. On benchmark data, boosting
of these WLs attains results close to the Real AdaBoost algorithm (with decision
trees) and SVM, constituting a low computational complexity competitive choice.

2.4 Variants of AdaBoost

In this section, we review several variants of AdaBoost (although we do not claim
to have an exhaustive list), both for binary and multiclass supervised learning
problems. Many of these variants have proven to be successful in different types
of learning scenarios.

The proposal of the AdaBoost algorithm stimulated a significant amount of
research on this type of learning technique, exploiting its theoretical properties
and experimental performance. From this research, several variants of AdaBoost
have emerged, some targeted at specific problems, such as, for example, face
detection and text categorization (TC). Those variants follow the overall structure of
AdaBoost (learn a weak classifier, compute the amount of error, update the weights
of the training patterns and repeat the process), but introduce changes on several
aspects, such as the weight update expression and classifier management.

2.4.1 Detailed Analysis of Some Variants

After AdaBoost was introduced, several modified versions (variants) have been
proposed, developed, and compared with AdaBoost. This section addresses some of
these variants (shown in the timeline of Fig. 2.8) for supervised learning of binary
classifiers.

The following subsections describe in detail some of these variants for binary
classification. These variants were selected to be presented in more detail, because
they are either the first variants to appear after AdaBoost was proposed or they bring
quite different new ideas into the adaptive boosting scheme. These variants have in
common the fact that all of them were proved to be successful in real-world machine
learning problems.
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Fig. 2.8 A (possibly incomplete) timeline of AdaBoost variants for supervised learning of binary
classifiers, as of 2011

Algorithm 5 Real AdaBoost
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.

M , the maximum number of classifiers.
Output: A classifier H WX ! f�1;C1g.
1: Initialize the weights wi D 1=N , i 2 f1; : : : ; N g:
2: for m D 1 to M do
3: Fit the class probability estimate pm.x/ D OPw.y D 1jx/, using wi .
4: Set Hm D 1

2
log ..1� pm.x//pm.x// 2 R.

5: Update the weights: wi  wi exp.�yi Hm.xi//

6: Renormalize to weights.
7: end for

8: Final classifier: H.x/ D sign

0
@ MX

jD1

˛j Hj .x/

1
A.

2.4.1.1 Real AdaBoost

The first variant we consider is Real AdaBoost [52, 100], where the term real refers
to the fact that the algorithm uses real-valued “classifiers” (i.e., before thresholding).
This real value can be seen as the probability, or degree of confidence, that a given
input pattern belongs to a class, considering the current weight distribution for the
training set. The Real AdaBoost algorithm is presented as Algorithm 5.

Comparing Real AdaBoost with AdaBoost, we see that the major differences are
in lines 3 and 4. In the Real AdaBoost algorithm, these steps consist of computing
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Algorithm 6 Logit Boost
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.

M , the maximum number of classifiers.
Output: A classifier H WX ! f�1;C1g.
1: Initialize the weights wi D 1=N , i 2 f1; : : : ; N g:
2: for m D 1 to M and while Hm ¤ 0 do

3: Compute the working response zi D y�

i � p.xi/

p.xi/.1� p.xi//
and weights wi D p.xi/.1�p.xi//.

4: Fit Hm.x/ by a weighted least-squares of zi to xi, with weights wi .

5: Set H.x/ D H.x/C 1
2
Hm.x/ and p.x/ D exp.H.x//

exp.H.x//C exp.�H.x//
.

6: end for

7: Final classifier: H.x/ D sign

0
@ MX

jD1

˛j Hj .x/

1
A.

and using estimates of the probabilities that each training pattern belongs to a
class, under the current weight distribution. Standard AdaBoost classifies the input
patterns and computes the weighted error rate.

2.4.1.2 Logit Boost

The Logit Boost variant consists of using adaptive Newton steps to fit an additive
logistic model [51, 52]. Instead of minimizing the exponential loss, Logit Boost
minimizes the logistic loss (negative conditional log-likelihood). Algorithm 6 details
the Logit Boost algorithm.

2.4.1.3 Gentle AdaBoost

The Gentle AdaBoost [52] algorithm improves over Real AdaBoost by using
Newton steps, providing a more reliable and stable ensemble, since it puts less
emphasis on outliers. Instead of fitting a class probability estimate, Gentle AdaBoost
(described in Algorithm 7) uses weighted least-squares regression [58] at each
iteration. The main difference between Gentle and Real AdaBoost is on the use of
the estimates of the weighted class probabilities in order to perform the update. The
algorithm is gentle because it is considered to be both conservative and more stable
as compared to Real AdaBoost. Gentle AdaBoost does not require the computation
of log ratios which can be numerically unstable (since they involve quotients,
maybe with the denominator approaching zero). Experimental results on benchmark
data show that the conservative Gentle AdaBoost has similar performance to Real
AdaBoost and Logit Boost, and in many cases outperforms these other two variants.
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Algorithm 7 Gentle AdaBoost
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.

M , the maximum number of classifiers.
Output: A classifier H WX ! f�1;C1g.
1: Initialize the weights wi D 1=N , i 2 f1; : : : ; N g:
2: for m D 1 to M do
3: Train Hm.x/ by weighted least-squares of yi to xi, with weights wi .
4: Update H.x/ H.x/CHm.x/.
5: Update wi  wi exp.�yi Hm.xi// and renormalize to

P
i wi D 1.

6: end for

7: Final classifier: H.x/ D sign
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Algorithm 8 Modest AdaBoost
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.

M , the maximum number of classifiers.
Output: A classifier H WX ! f�1;C1g.
1: Initialize the weights wi D 1=N , i 2 f1; : : : ; N g:
2: for m D 1 to M and while Hm ¤ 0 do
3: Train Hm.x/ by weighted least-squares of yi to xi, with weights wi .
4: Compute “inverted” distribution wi D .1� wi / and renormalize to

P
i wi D 1.

5: Compute P C1
m D Pw.y D C1; Hm.x//, P

C1

m D Pw.y DC1; Hm.x//.

6: Compute P �1
m D Pw.y D �1; Hm.x//, P

�1

m D Pw.y D �1; Hm.x//,
7: Set Hm.x/ D �

P C1
m

�
1� P C1

m

�� P �1
m

�
1� P �1

m

��
8: Update wi  wi exp.�yi Hm.xi// and renormalize to

P
i wi D 1.

9: end for

10: Final classifier: H.x/ D sign

0
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jD1

˛j Hj .x/

1
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2.4.1.4 Modest AdaBoost

The Modest AdaBoost algorithm [119] is known to have lower GE and higher TE, as
compared to Real and Gentle AdaBoost variants. Algorithm 8 shows the details of
Modest AdaBoost, which, as compared to the previous variants, uses a different
weighting scheme for the correctly and incorrectly classified patterns, using an
“inverted” distribution.

The standard distribution wi assigns high weights to training samples misclassi-
fied by earlier steps. On the contrary, wi gives higher weights to samples that are
already correctly classified by earlier steps.

Lines 5 and 6 deal with the direct and “inverted” distributions, using the
expressions PC1

m D Pw.y D C1; Hm.x// and P�1
m D Pw.y D �1; Hm.x//; these

expressions compute how good is the current weak classifier at predicting class

labels. On the other hand, the expressions P
C1

m D Pw.y D C1; Hm.x// and
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P
�1

m D Pw.y D �1; Hm.x// estimate how well our current WL Hm.x/ is working
on the data that has been correctly classified by previous steps.

The update Hm.x/ D .PC1
m .1�PC1

m /�P�1
m .1�P�1

m // decreases weak classifiers
contribution, if it works “too well” on data that has been already correctly classified
with high margin. This way, the algorithm is named Modest because the classifiers
tend to work only in their domain, as defined by wi .

2.4.1.5 Float Boost

The Float Boost [72,73] variant is composed of the following stages: 1-initialization;
2-forward inclusion; 3-conditional exclusion; 4-output. All of these stages, with
the exception of stage 3, are similar to those of AdaBoost and other variants as
discussed so far. The novelty here is the conditional exclusion stage, in which the
least significant weak classifier is removed from the set of classifiers, subject to the
condition that the removal leads to an error below some threshold. The Float Boost
algorithm details are described as Algorithm 9.

2.4.1.6 Emphasis Boost

The Emphasis Boost variant uses a weighted emphasis (WE) function [53]. Each
input pattern is weighted according to a criterion (parameterized by �), through
the WE function, in such a way that the training process focuses on the “critical”
patterns (near the classification boundary) or on the quadratic error of each pattern.
Algorithm 10 presents the details of Emphasis Boost.

The WE function is defined by

wi D exp

0
B@�

0
@ mX

jD1

�
˛j Hj .xi / � yi

�21A � .1 � �/

0
@ mX

jD1

Hj .xi /

1
A

2
1
CA (2.8)

and controls where the emphasis is placed. This flexible formulation allows
choosing how much to consider the proximity terms by means of a weighting
parameter .0 � � � 1/. This way, we have a boosting by weighting boundary
and erroneous samples technique. Regarding the value of �, three particular cases
are interesting enough to be considered:

• � D 0, focus on the “critical” patterns because only the “proximity” to the
boundary is taken into account

wi D exp

2
64�

0
@ mX

jD1

Hj .xi/

1
A

2
3
75 : (2.9)
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Algorithm 9 Float Boost
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.

M , the maximum number of classifiers.
N examples N D aC b; a examples have yi DC1 and b examples have yi D �1.
J.HM /, the cost function and the maximum acceptable cost J �.

Output: A classifier H WX ! f�1;C1g.
1: f1 - Initialization stage.g
2: Initialize the weights w

.0/
i D 1=2a, for those examples with yi D C1.

3: Initialize the weights w
.0/
i D 1=2b, for those examples with yi D �1.

4: J min
m D J � m D f1; : : : ; Mmaxg.

5: M D 0, H0 D fg.
6: f2 - Forward inclusion stage.g
7: M  M C 1.
8: Learn Hm.x/ and ˛M .
9: Update w.M /

i  w.M �1/
i exp.�yi ˛M HM .xi// and renormalize to

P
i wi D 1.

10: HM DHM �1

S fHM g.
11: if J min

M > J.HM / then

12: J min
M D J.HM /.

13: end if
14: f3 - Conditional exclusion stage.g
15: h0 D arg minh 2 HM

J.HM � h/.

16: if J.HM � h0/ < J min
M �1 then

17: HM �1 DHM � h0:

18: J min
M �1 D J.HM � h0/

19: M  M � 1

20: if h0 D h0

m then
21: Recalculate w.j /

i and hj for j D fm0; : : : ; M g.
22: Goto line 15.
23: else
24: if M DMmax or J.HM / < J � then
25: Goto line 32.
26: else
27: Goto line 7.
28: end if
29: end if
30: end if
31: f4 - Output stage.g
32: Final classifier: H.x/ D sign

0
@ MX

jD1

˛j Hj .x/

1
A.

• � D 0:5, we get the classical Real AdaBoost emphasis function

wi D exp

" Pm
jD1.˛j Hj .xi/ � yi /

2

2

!
� .

Pm
jD1 Hj .xi//

2

2

#
: (2.10)
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Algorithm 10 Emphasis Boost
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.

M , the maximum number of classifiers.
�, weighting parameter .0 � � � 1/.

Output: H.x/, a classifier suited for the training set.

1: Initialize the weights wi D 1=N , i 2 f1; : : : ; N g:
2: for m D 1 to M and while Hm ¤ 0 do
3: Fit a classifier Hm.x/ to the training data using weights wi .

4: Let errm DPN
iD1 wi yi Hm.xi/

.PN
iD1 wi .

5: Compute ˛m D 0:5 log..1C errm/=.1� errm//.

6: Set wi D exp

�
�
�Pm

jD1

�
˛j Hj .xi/� yi

�2�� .1� �/
�Pm

jD1 Hj .xi/
�2
�

.

7: Renormalize to
P

i wi D 1.
8: end for

9: Final classifier: H.x/ D sign

0
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˛j Hj .x/

1
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• � D 1, the emphasis function only pays attention to the quadratic error of each
pattern

wi D exp

2
4 mX

jD1

.˛j Hj .xi/ � yi /
2

3
5 : (2.11)

The key issue with this algorithm is the choice of �.

2.4.1.7 Reweight Boost

In the Reweight Boost variant [92], the weak classifiers are stumps (decision trees
with a single node). The main idea is to consider as base classifier for boosting,
not only the last weak classifier, but a classifier formed by the last r selected weak
classifiers, using a classifier reuse technique. Algorithm 11 presents the details of
the Reweight Boost variant.

2.4.1.8 Other Variants

For the sake of both completeness of this chapter and fairness to the many authors
of AdaBoost variants, in this subsection we describe further variants for binary
classification. We show the name of each variant as well as its main characteristics.

The KLBoost [74] variant uses Kullback–Leibler (KL) [22] divergence and
operates as follows. First, classification is based on the sum of histogram di-
vergences along corresponding global and discriminating linear features. Then,
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Algorithm 11 Reweight Boost
Input: Dataset Z D fz1; z2; : : : ; zN g, with zi D .xi; yi /, where xi 2X and yi 2 f�1;C1g.

M , the maximum number of classifiers.
r , the last r selected weak classifiers .

Output: H.x/, a classifier suited for the training set.

1: Initialize the weights wi D 1=N , i 2 f1; : : : ; N g:
2: for m D 1 to M and while Hm ¤ 0 do
3: Fit a classifier Hm.x/ to the training data using weights wi .
4: Get combined classifier H r

t from Ht ; Ht�1; : : : ; Hmax.t�r;1/.

5: Let errm DPN
iD1 wi yi Hm.xi/

.PN
iD1 wi .

6: Compute ˛m D 0:5 log..1� errm/=errm/.
7: Set wi  wi exp

��˛myi H
r
t .xi/

�
.

8: Renormalize to
P

i wi D 1.
9: end for

10: Final classifier: H.x/ D sign

0
@ MX

jD1

˛j Hj .x/

1
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these linear KL features, are iteratively learned by maximizing the projected KL
divergence in a boosting manner. Finally, the coefficients to combine the histogram
divergences are learned by minimizing the recognition error, once a new feature
is added to the classifier. This contrasts with conventional AdaBoost, in which
the coefficients are empirically set. Because of these properties, KLBoosting
classifier generalizes very well and has been applied to high-dimensional spaces
of image data.

One of the experimental drawbacks of AdaBoost is that it can not improve the
performance of Naı̈ve Bayes (NB) [34,130] classifier as expected. ActiveBoost [124]
overcomes this difficulty by using active learning to mitigate the negative effect of
noisy data and introduce instability into the boosting procedure. Empirical studies
on a set of natural domains show that ActiveBoost has clear advantages with respect
to the increasing of the classification accuracy of NB when compared against
AdaBoost.

The Jensen–Shannon Boosting [61] incorporates Jensen–Shannon (JS) diver-
gence into AdaBoost. JS divergence is advantageous in that it provides a more
appropriate measure of dissimilarity between two classes and it is numerically more
stable than other measures such as KL divergence.

Infomax Boosting [76] is an efficient feature pursuit scheme for boosting.
It is based on the infomax principle, which seeks optimal feature that achieves
maximal mutual information with class labels. Direct feature pursuit with infomax is
computationally prohibitive, so an efficient gradient ascent algorithm is proposed,
based on the quadratic mutual information, nonparametric density estimation and
fast Gauss transform. The feature pursuit process is integrated into a boosting
framework as infomax boosting. It is similar to Real AdaBoost, but with the
following differences:
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• features are general linear projections;
• generates optimal features;
• uses KL divergence to select features;
• finer tuning on the coefficients.

Ent-Boost [68] uses entropy measures. The class entropy information is used to
automatically subspace splitting and optimal weak classifier selection. The number
of bins is estimated through a discretization process. KL divergence is applied to
probability distribution of positive and negative samples, to select the best weak
classifier in the weak classifier set.

The MadaBoost [30] algorithm consists on a modification of the weighting
scheme of AdaBoost. This variant mitigates the problems that AdaBoost suffers
from noisy data, improving its performance.

The SoftBoost algorithm [126] is a totally corrective algorithm which optimizes
the soft margin and tries to produce a linear combination of hypotheses. The term
soft means that the algorithm does not concentrate too much on outliers and hard to
classify examples. It allows them to lie below the margin (with wrong predictions)
but penalizes them linearly via slack variables. SoftBoost tries to avoid the problem
of overfitting as in AdaBoost when using training data with high degree of noise.

The linear programming boosting (LPBoost) [27] algorithm maximizes the
margin between training samples of different classes; this way, it belongs to the
class of margin-maximizing supervised classification algorithms. The boosting task
consists of constructing a learning function in the label space that minimizes mis-
classification error and maximizes the soft margin, formulated as a linear program
which can be efficiently solved using column generation techniques, developed for
large-scale optimization problems. Unlike gradient boosting algorithms, which may
converge in the limit only, LPBoost converges in a finite number of iterations to
a global solution, being computationally competitive with AdaBoost. The optimal
solutions of LPBoost are very sparse in contrast with gradient-based methods.
Empirical findings show that LPBoost converges quickly, often faster than other
formulations.

LPBoost performs well on natural data, but there are cases where the number
of iterations is linear in the number of training samples instead of logarithmic.
By simply adding a relative entropy regularization to the linear objective of
LPBoost, we get entropy-regularized LPBoost ERLPBoost [127], for which there
is a logarithmic iteration bound. As compared to a previous algorithm, named
SoftBoost, it has the same iteration bound and better GE. ERLPBoost does not
suffer from this problem and has a simpler motivation. A detailed theoretical and
experimental comparison between LPBoost and AdaBoost can be found in [69].

The MarginBoost algorithm [81] is a variant of the more general algorithm
AnyBoost [81]. MarginBoost is also a general algorithm. It chooses a combination
of classifiers to optimize the sample average of any cost function of the margin.
MarginBoost performs gradient descent in function space, at each iteration choosing
a base classifier to include in the combination so as to maximally reduce the
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cost function. As in AdaBoost, the choice of the base classifier corresponds to a
minimization problem involving weighted classification error. That is, for a certain
weighting of the training data, the base classifier learning algorithm attempts to
return a classifier that minimizes the weight of misclassified training examples.

The general class of algorithms named AnyBoost consists of gradient descent
algorithms for choosing linear combinations of elements of an inner product space
so as to minimize some functional cost. Each component of the linear combination
is chosen to maximize a certain inner product. In MarginBoost, this inner product
corresponds to the weighted TE of the base classifier.

Brown Boost [45] uses a nonmonotonic weighting function such as examples
far from the boundary decrease in weight, trying to achieve a given target error
rate. It de-emphasizes outliers when it seems clear that they are too hard to classify
correctly, being an adaptive version of Freund’s boost-by-majority algorithm [44].
This variant reveals an intriguing connection between boosting and Brownian
motion.

The Weight Boost algorithm [63] uses input-dependent weighting factors for
WLs. It tries to cope with two possible problems of AdaBoost: suffer from overfit-
ting, especially for noisy data; the assumption that the combination weights are fixed
constants and therefore does not take particular input patterns into consideration.
A learning procedure which is guaranteed to minimize TEs is devised. Empirical
studies show that Weight Boost almost always achieves a considerably better
classification accuracy than AdaBoost. Furthermore, experiments on data with
artificially controlled noise indicate that the Weight Boost algorithm is more robust
to noise than AdaBoost.

Asymmetric Boosting [79] is a cost-sensitive extension of boosting. It is derived
from decision-theoretic principles, which exploit the statistical interpretation of
boosting to determine a principled extension of the boosting loss. Similarly to
AdaBoost, the cost-sensitive extension minimizes this loss by gradient descent on
the functional space of convex combinations of WLs, and produces large margin
detectors. Asymmetric boosting is fully compatible with AdaBoost, in the sense
that it becomes the latter when errors are weighted equally.

In [59] we have an asymmetric boosting method, Boosting with Different Costs.
The motivation is as follows; traditional boosting methods assume the same cost
for misclassified instances from different classes, and in this way focus on good
performance with respect to overall accuracy. This method is more generic than
AdaBoost, and is designed to be more suitable for problems where the major
concern is a low false positive (or negative) rate, such as SPAM filtering.

The Quadratic Boost [86] algorithm improves AdaBoost with a quadratic
combination of base classifiers. It operates by constructing an intermediate learner
on the combined linear and quadratic terms. A new method for iterative optimization
is proposed; first a classifier is trained by randomizing the labels of the training
examples. Subsequently, the input learner is called repeatedly with a systematic
update of the labels of the training examples in each round. The quadratic-boosting
algorithm converges under the condition that the given base learner minimizes the
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empirical error. The experimental results show that quadratic boosting compares
favorably with AdaBoost on large datasets at the cost of the training time.

The WaldBoost [106] variant has near optimal time and error rate trade-off. It
integrates the AdaBoost algorithm for measurement selection and ordering and the
joint probability density estimation, with the optimal sequential probability ratio test
decision strategy. It is suited for computer vision classification problems, in which
both the error and time characterize the quality of a decision.

In [75] feature reweighting is integrated into the boosting scheme, which not only
weights the samples but also weights the features iteratively; it is named I.Boosting.
To avoid overfitting problems, a relevance feedback mechanism is applied into
the boosting framework. I.Boosting is implemented using adaptive discriminant
analysis (ADA) as base classifiers. The experimental results show the superior
performance of I.Boosting over AdaBoost.

In [46] we have a new boosting algorithm, motivated by the large margins
theory for boosting. The experimental results point out that the new algorithm is
significantly more robust against label noise than existing boosting algorithms.

The algorithm proposed in [85] combines the base learners with symmetric
functions. Among its properties of practical relevance, we have significant resistance
against noise, and its efficiency even in an agnostic learning setting. Experimental
results show the reliability of the classifiers built.

The MilBoost [123] variant uses cost functions from the multiple instance
learning (MIL) literature combined with the AnyBoost framework. The feature
selection criterion of MILBoost is modified to optimize the performance of the
Viola–Jones cascade method for object detection (see Section 2.6.1). Experiments
with this variant show improvement on the detection rate, as compared to previous
approaches. This increased detection rate is a consequence of simultaneously
learning the locations and scales of the objects in the training set along with the
parameters of the classifier.

The totally corrective boosting [128], the weight update of each patterns is
analyzed as the minimization of the relative entropy, subject to linear constraints.
The algorithm is “totally corrective” in the sense that it takes into account the outputs
of all the past WLs; the “corrective” versions only take into account the last WL
results. A connection with margin maximization is also shown for totally corrective
versions. The experimental results show that the totally corrective versions of
AdaBoost attain smaller combinations of WLs than the corrective ones, being
competitive with LPBoost (itself a totally corrective boosting algorithm with no
regularization, for which there is no iteration bound known). An asymmetric totally
corrective boosting approach for real-time object detection is proposed in [125].

In [105], the BoostMetric algorithm is proposed. The goal of this algorithm
is to learn a semidefinite metric using boosting techniques. It is a generalization
of AdaBoost in the sense that the WL is a matrix instead of a classifier, being
simple and efficient. It attains better performance than many existing metric learning
methods.
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A boosting algorithm called winner-take-all multiple category boosting (WTA-
McBoost) was proposed in [135]. On the learning process, the example subcategory
labels are modified in order to make better object/nonobject decision. Multiple
subcategory boosting classifiers are learned simultaneously with the assumption
that the final classification of an example will only be determined by the highest
score of all the subcategory classifiers (the winner will take all). The subcategory
labels of the examples are dynamically assigned in this process, reducing the risk of
having outliers in each subcategory. The WTA-McBoost algorithm uses confidence-
rated prediction with asymmetric cost and is thus very efficient to train and test. The
algorithm is successfully applied by building a multiview face detector.

The standard boosting procedure is extended to train a two-layer classifier
dedicated to handwritten character recognition [43]. This learning scheme relies
on a hidden layer and an output layer to obtain a final classification decision.
The classical AdaBoost procedure is extended to train a multilayered structure
by propagating the error through the output layer. This extension allows for the
selection of optimal WLs by minimizing a weighted error, in both the output layer
and the hidden layer.

2.4.2 Multiclass Variants

Since the first binary classification versions of AdaBoost, several generalizations of
this algorithm to the multiclass case have been proposed. As a result of this direction
of research, several multiclass AdaBoost variants have been proposed, as depicted in
the timeline shown in Fig. 2.9. Similarly to what we did in Section 2.4.1.8, for each
variant we will point out its main features as well as the connections among them.
Many variants address multiclass classification problems as the concatenation of
binary problems (a multiclass classification problem can be reformulated as a set of
binary problems), while other (more recent) variants apply and combine multiclass
classifiers directly.

AdaBoost.M1 and AdaBoost.M2 [50] are multiclass extensions of (Discrete)
AdaBoost (Algorithm 4). They differ between themselves in the way they treat
each class. In the M1 variant, the weight of a base classifier is a function of the
error rate. In M2, the sampling weights are increased for instances for which the
pseudo-loss exceeds 0.5. The AdaBoost.M1W [39] algorithm changes AdaBoost.M1
as follows. In AdaBoost.M1, the weight of a base classifier is a function of the
error rate. For AdaBoost.M1W this function is such that it gets positive, if the
error rate is less than the error rate of random guessing. BoostMA [40] is also a
simple modification of AdaBoost.M2 with the advantage that the base classifier
minimizes the confidence-rated error, whereas for AdaBoost.M2 the base classifier
should minimize the pseudo-loss. This makes BoostMA more easily applicable to
already existing base classifiers; it also tends to converge faster than AdaBoost.M2.
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Fig. 2.9 A (possibly incomplete) timeline of AdaBoost variants for supervised learning, on
multiclass problems, as of 2011

AdaBoost.MH [100] is a multiclass and multilabel2 version of AdaBoost based
on Hamming loss [100]. AdaBoost.MH generalizes AdaBoost, being tailored for
multilabel text categorization tasks with decision stumps as WLs. MPBoost [41]
further improves AdaBoost.MH augmenting its efficiency by performing a multiple
pivot selection at each boosting iteration. Both these algorithms use binary features.

The AdaBoost.MO algorithm [100] performs a stage-wise functional gradient
descent procedure on a given cost function. AdaBoost.MR [100] is a multiclass,
multilabel version of AdaBoost based on ranking loss. AdaBoost.OC [96], where
OC stands for output codes and AdaBoost.ECC [56], where ECC stands for error-
correcting codes are similar algorithms; AdaBoost.OC is a shrinkage version of
AdaBoost.ECC, which performs a stage-wise functional gradient descent procedure
on an exponential loss cost function.

The Vector Boosting [60] algorithm is an extension of the Real AdaBoost in
which both its WL and its final output are vectors rather than scalars. The idea
of Vector Boosting comes from the multiclass multilabel (MCML) version of the
Real AdaBoost, which assigns a set of labels for each sample and decomposes
the original problem into k orthogonal binary ones. The major problem of this
algorithm is that for each binary classification problem, a sample is regarded as
either positive or negative. However, in many complicated cases, it is not tenable
since some samples are neither positive nor negative for certain binary classification
problems of which they are independent, which makes the MCML version of Real
AdaBoost inapplicable.

AdaBoost.ERP [70] is AdaBoost.ECC with repartitioning. This algorithm
improves two well-known issues of the quality of the ensemble learned by
AdaBoost.ECC: the performance of the base learner; the error-correcting ability of
the coding matrix. A coding matrix with strong error-correcting ability may not be

2A given instance can be classified into one or more classes.
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overall optimal if the binary problems are too hard for the base learner. A trade-off
between error-correcting and base learning is then proposed. The coding matrix is
modified according to the learning ability of the base learner.

In [109], shrinkage is applied as regularization in AdaBoost.MO and
AdaBoost.ECC and leads two new algorithms named AdaBoost.SMO and
AdaBoost.SECC (the shrinkage versions of MO and ECC, respectively). A similar
proposal for AdaBoost.SECC can also be found in [110].

In [138], we have a new algorithm named Multiclass AdaBoost that directly
extends the AdaBoost algorithm to the multiclass case without reducing it to
multiple two-class problems. The algorithm is equivalent to a forward stage-wise
additive modeling algorithm that minimizes a novel exponential loss for multiclass
classification. The algorithm is highly competitive in terms of misclassification error
rate.

The AdaBoost.BCH algorithm [65] is a multiclass boosting algorithm which
solves a C class problem by using C � 1 binary classifiers arranged by a
hierarchy that is learned on the classes based on their closeness. AdaBoost is then
applied to each binary classifier. AdaBoost.BCH requires less computation than
AdaBoost.MH, with better or comparable generalization.

In [71], the concept of adaptive base class boost (ABC-Boost) for multiclass
classification is addressed deriving ABC-MART, a concrete implementation of ABC-
Boost. For binary classification, ABC-MART recovers MART and for multiclass
classification, ABC-MART considerably improves MART, as evaluated on several
public datasets.

AdaBoost.HM was proposed in 2010 [64]. It is based on hypothesis margin and
directly combines multiclass weak classifiers, instead of learning binary WLs. The
hypothesis margin maximizes the output about the positive class and minimizes
the maximal outputs about the negative classes. Upper bounds on the TE of
AdaBoost.HM are derived and compared against AdaBoost.M1 upper bounds. The
WLs are feedforward NNs. AdaBoost.HM yields higher classification accuracies
than both the AdaBoost.M1 and the AdaBoost.MH algorithms, being computation-
ally efficient in training.

Recently, a totally corrective multiclass boosting was proposed [57]. After an
analysis of some methods that extend two-class boosting to multiclass, a column-
generation based totally corrective framework for multiclass boosting learning is
derived, using the Lagrange dual problems. Experimental results show that the new
algorithms have comparable generalization capability but converge much faster than
their counterparts.

StypBoost [129] is a bilinear boosting algorithm, which extends the multiclass
boosting framework of JointBoost to optimize a bilinear objective function. This
allows style parameters to be introduced to aid classification, where style is any
factor which the classes vary with systematically, modeled by a vector quantity.
The algorithm allows learning with different styles. It is applied successfully to
two object class segmentation tasks: road surface segmentation and general scene
parsing.
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JointBoost [107, 113] is a method where boosted one-versus-all classifiers are
trained jointly and are forced to share features. It has been demonstrated to lead both
to higher accuracy and smaller classification time, compared to using one-versus-all
classifiers that were trained independently and without sharing features.

2.4.2.1 Analysis of Multiclass Boosting Algorithms

In [109] the AdaBoost.MO, AdaBoost.OC, and AdaBoost.ECC algorithms are
studied. It is shown that MO and ECC perform stage-wise functional gradient
descent on a cost function defined over margin values, and that OC is a shrinkage
version of ECC. The AdaBoost.SMO and AdaBoost.SECC are the shrinkage
versions of MO and ECC, respectively.

A unifying framework for studying the solution of multiclass categorization
problems, by reducing them to multiple binary problems that are then solved
using a margin-based binary learning algorithm is proposed in [2]. The proposed
framework unifies some of the most popular approaches in which each class is
compared against all others, or in which all pairs of classes are compared to
each other, or in which output codes with error-correcting properties are used.
A general method for combining the classifiers generated on the binary prob-
lems is proposed. A generic empirical multiclass loss bound given the empirical
loss of the individual binary-learning algorithms is proven. The scheme and the
corresponding bounds apply to many popular classification learning algorithms
including SVM, AdaBoost, regression, logistic regression, and decision-tree al-
gorithms. A multiclass GE analysis for general output codes with AdaBoost is
provided.

The ability of boosting to achieve drastic improvements compared to the
individual WLs has been noticed by several researchers. For two-class problems
it has been observed that AdaBoost, is quite unaffected by overfitting. However, for
the case of noisy data, it is also known that AdaBoost can be improved considerably
by introducing some regularization technique. In speech-related problems one
often considers multiclass problems and boosting formulations have been used
successfully to solve them. Under this context, [90] reviews and extends the existing
multiclass boosting algorithms to derive new boosting algorithms, which are more
robust against outliers and noise in the data; these algorithms are also able to exploit
prior knowledge about relationships between the classes.

In [110], a new interpretation of AdaBoost.ECC and AdaBoost.OC is presented.
AdaBoost.ECC performs stage-wise functional gradient descent on a cost function,
defined in the domain of margin values; AdaBoost.OC is a shrinkage version
of AdaBoost.ECC. AdaBoostBCH has slower training and higher generalization
ability as compared to AdaBoost.ECC [65].
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2.5 Boosting for Semi-Supervised Learning

Semi-supervised learning (SSL) [15] has attracted considerable research efforts in
the last few years. In many learning problems, we have a large amount of data
available, but only a subset of it is labeled. In this section, we review several boosting
algorithms for SSL, shown in the timeline of Fig. 2.10.

2.5.1 MixtBoost

The MixtBoost algorithm [55] was the first variant of AdaBoost to for SSL; the
authors address the question: can boosting be adapted for SSL learning? The base
classifiers are mixture models; thus, MixtBoost can be seen as boosting of mixture
models.

The main ingredients of AdaBoost are the loss and the margin. The simplest
way to generalize to SSL is to define these quantities for unlabeled data. This
generalization to unlabeled data should not affect the labeled examples and should
penalize inconsistencies between the classifier output and the available information.
A loss definition is proposed for unlabeled data, from which margins are defined.
The missing labels are interpreted as the absence of class information with the key
idea that the pattern belongs to a class, but the class is unknown.

2.5.2 SSMarginBoost

The SSMarginBoost algorithm is an extension of MarginBoost to SSL [26] that
explores the clustering assumption of SSL [15] and the large margin criterion.

Fig. 2.10 A (possibly incomplete) timeline of AdaBoost variants for semi-supervised learning on
binary and multiclass problems, as of 2011
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The margin definition is extended to unlabeled data and the gradient descent algo-
rithm for optimizing the resulting margin cost function is derived. SSMarginBoost
can be applied with any base classifier able to handle unlabeled data, by means of
mixture models trained with an expectation-maximization (EM) algorithm [28, 34].

2.5.3 ASSEMBLE

In [6], an adaptive semi-supervised ensemble method, named ASSEMBLE, was
proposed. The method constructs ensembles based on both labeled and unlabeled
data, by alternating between assigning “pseudo-classes” to the unlabeled data using
the existing ensemble and constructing the next base classifier using both the
labeled and pseudo-labeled data. This algorithm corresponds to maximizing the
classification margin in hypothesis space as measured on both the labeled and
unlabeled data. Unlike alternative approaches, ASSEMBLE does not require a
SSL method for the base classifier. It can be used in conjunction with any cost-
sensitive classification algorithm for both two-class and multiclass problems. As
in SSMarginBoost, ASSEMBLE adopts the MarginBoost notation and strategy
adapted to the margin measured on both the labeled and unlabeled data; the key
difference is that ASSEMBLE assigns “pseudo-classes” to the unlabeled data.

Moreover, ASSEMBLE using decision trees won the Neural Information
Processing Systems (NIPS) 2001 Unlabeled Data Competition. It achieves good
results on several benchmark datasets using both decision trees and neural networks.

2.5.4 SemiBoost

The SemiBoost [78] algorithm was proposed as a boosting framework aiming at
improving the classification accuracy of any given supervised learning algorithm by
using the available unlabeled examples. The main advantages of SemiBoost over
previous approaches are: (1) performance improvement of any supervised learning
algorithm, using unlabeled data; (2) efficient computation by the iterative boosting
algorithm and (3) exploiting both the SSL manifold and cluster assumptions [15].

An empirical study on 16 different datasets and text categorization demonstrates
that SemiBoost improves the performance of several commonly used supervised
learning algorithms, by using a large number of unlabeled examples.

2.5.5 MultiClass Semi-Supervised Boosting

The multiclass semi-supervised boosting (MCSSB) algorithm was proposed
in [115]. Compared to the existing semi-supervised boosting methods, MCSSB
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has the advantage to exploit both classification confidence and similarities among
examples, when deciding the pseudo-labels for unlabeled examples. This way, it
overcomes the shortcoming of the multiclass approach one-against-the-rest applied
on binary classifiers. Empirical evidence on several datasets shows that the MCSSB
algorithm performs better than the previous algorithms for SSL.

2.5.6 SERBoost

The problem of bad scaling behavior of many SSL methods on large scale vision
problems is addressed in [93]. Based on the expectation regularization (ER)
principle, the SERBoost SSL boosting algorithm is proposed. It can be applied to
large scale vision problems and its complexity is dominated by the base learners.
The algorithm provides a margin regularizer for the boosting cost function and
shows a principled way of utilizing prior knowledge. As compared to supervised
and semi-supervised methods, SERBoost shows improvement both in terms of
classification accuracy and computational speed.

2.5.7 Information Theoretic Regularization Boosting

An SSL boosting algorithm that incrementally builds linear combinations of weak
classifiers through generic functional gradient descent, using both labeled and
unlabeled training data, was proposed in [136]. The approach is based on extending
the information regularization framework to boosting, bearing loss functions that
combine log loss on labeled data with the information-theoretic measures to encode
unlabeled data. Even though the information-theoretic regularization terms make
the optimization nonconvex, a simple sequential gradient descent optimization
algorithm is applied. This approach attains good results on synthetic, benchmark,
and real world tasks as compared to supervised and semi-supervised boosting
algorithms.

2.5.8 Multiview Boosting

A multiview boosting algorithm was proposed in [94], that, unlike other approaches,
specifically encodes the uncertainties over the unlabeled samples in terms of given
priors. Instead of ignoring the unlabeled samples during the training phase of
each view, it uses the different views to provide an aggregated prior which is
then used as a regularization term inside a semi-supervised boosting method, for
multiclass problems. The algorithm uses priors as a regularization component over
the unlabeled data. Since the priors may contain a significant amount of noise, a
new loss function for the unlabeled regularization is introduced, being robust to
noisy priors.
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2.5.9 Extensions on Semi-Supervised Boosting Algorithms

Different strategies have been applied to extend boosting algorithms to SSL
problems. Typically, these strategies do not take into account the local smoothness
constraints among data into account during ensemble learning. A local smoothness
regularizer to semi-supervised boosting algorithms based on the universal optimiza-
tion framework of margin cost functionals was proposed in [17]. This regularizer is
applicable to existing SSL boosting algorithms to improve their generalization and
speed up their training.

In [18], the problem of using all the three SSL assumptions (smoothness, cluster,
and manifold) during boosting is addressed. A novel cost functional consisting of the
margin cost on labeled data and the regularization penalty based on unlabeled data is
proposed. Thus, minimizing the proposed cost functional with a greedy stage-wise
optimization procedure leads to a generic boosting framework for SSL.

A local smoothness regularizer for SSL boosting algorithm, based on the
universal optimization framework of margin cost functionals, was proposed in [17].
This regularizer is applicable to existing SSL boosting algorithms to improve their
generalization and speed up their training.

2.6 Experimental Evaluation

In this section, we discuss the application of AdaBoost and its variants on a wide
variety of problems. We compare the boosting algorithms with other machine
learning techniques, exploiting the theoretical properties of AdaBoost.

2.6.1 Successful Applications

Besides its nice theoretical properties, the AdaBoost algorithm and its variants
have been found to work very well on problems from different domains. Empirical
evidence from many researchers has shown the adequacy of boosting algorithms
for real-world problems. This section outlines some successful applications of
AdaBoost and its variants for binary and multiclass problems. There are many
papers which evaluate AdaBoost and its variants for many types of problems; see for
instance [5,29,33,62,77,89,104]. It has been shown empirically that AdaBoost with
decision trees has excellent performance, being considered the best “off-the-shelf”
classification algorithm [5, 58].

The first boosting algorithms were tested on a optical character recognition
(OCR) problem of optical handwritten digits, with a set of 118,000 instances in
boosting multilayer perceptrons [32].
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Table 2.2 Summary of the use of boosting algorithms for face detection
(adapted from [72])

Face Detector AdaBoost Variant Weak Learner

Viola–Jones [120] Discrete AdaBoost Stubs
Float Boost Float Boost [72, 73] 1D Histograms
KLBoost KLBoost [74] 1D Histograms
Schneiderman Real AdaBoost [100] One group of nD Histograms

In [122], a pedestrian detection system that integrates image intensity infor-
mation with motion information is proposed. A detection-style algorithm scans a
detector over two consecutive frames of a video sequence. The detector is trained
using AdaBoost to take advantage of both motion and appearance information to
detect a walking person. The detector combines two sources of information.

The breast cancer detection problem is addressed in [111]. A data preprocessing,
feature selection and Modest AdaBoost algorithm, are applied to the breast cancer
survival databases in Thailand. For this task, Modest AdaBoost outperforms Real
and Gentle AdaBoost variants.

In [101], boosting is applied to multiclass text categorization tasks. The approach
named BoosTexter has comparable results to other text-categorization algorithms,
on a variety of tasks. The BoosTexter system is also applied to speech categorization
to call-type identification from unconstrained spoken customer responses.

For face detection, boosting algorithms have been the most effective of all those
developed so far, achieving the best results. They produce classifiers with about the
same error rate than neural networks, with faster training [72]. Table 2.2 summarizes
the use of boosting algorithms for face detection (a stub is a decision tree with a
single decision node).

In [25] a fast and efficient face detection method has been devised, which
relies on the AdaBoost algorithm and a set of Haar wavelet-like features. The face
detection problem was been addressed also with Asymmetric Boosting [79], where it
is shown to outperform a number of previous heuristic proposals for cost-sensitive
boosting. For an updated literature on face detection and the use of boosting and
other machine learning techniques, see [133].

A method for selecting edge-type features for iris recognition is proposed in [16].
The AdaBoost algorithm is used to select a filter bank from a pile of filter candidates.
The decisions of the weak classifiers associated with the filter bank are linearly
combined to form a strong classifier. The boosting algorithm can effectively improve
the recognition accuracy at the cost of a slight increase on the computation time.

A new approach, proposing two particle swarm optimization (PSO) methods
within AdaBoost for object detection, for constructing weak classifiers in AdaBoost
is proposed in [83]. The experiments show that using PSO for selecting features and
evolving associated weak classifiers in AdaBoost is more effective than for selecting
features only for this problem.
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In [131] a face recognition method using AdaBoosted low dimensional and
discriminant Gabor features is proposed. AdaBoost is successfully applied to face
recognition by introducing the intra-face and extra-face difference space in the
Gabor feature space. By using the proposed method, only hundreds of Gabor
features are selected. Experiments shown that these hundreds of Gabor features
are enough to achieve good performance comparable to that of methods using the
complete set of Gabor features.

A feature selection approach based on Gabor wavelets and AdaBoost is proposed
in [137]. The features are first extracted by a Gabor wavelet transform. For each
individual, a small set of significant features are selected by the AdaBoost algorithm
from the pool of the Gabor wavelet features. In the feature selection process, each
feature is the basis for a weak classifier. In each round of AdaBoost learning,
the feature with the lowest error of weak classifiers is selected. The results from
the experiments have shown that the approach successfully selects meaningful and
explainable features for face verification. The experiments suggest that the feature
selection algorithm for face verification selects the features corresponding to the
unique characteristics rather than common characteristics, and a large example size
statistically shows the benefits of AdaBoost feature selection.

The problem of classifying music by genre by partitioning songs into smaller
pieces and classifying each one separately is addressed in [7]. The choice of features
together with an AdaBoost.MH classifier proved to be the most effective method for
genre classification at the MIREX 2005 international contest in music information
extraction, and the second-best method for recognizing artists.

In [84], 2D cascaded AdaBoost, a novel classifier designing framework, is
presented and applied to the eye localization problem. There are two cascade
classifiers in two directions: the first one is a cascade designed by bootstrapping
the positive samples; the second one, as the component classifiers of the first one, is
cascaded by bootstrapping the negative samples. The proposed structure is applied
to eye localization and evaluated on four public face databases, and extensive
experimental results verified the effectiveness, efficiency, and robustness of the
proposed method.

AdaBoost can also improve the performance of a strong learning algorithm as
proposed in [103]: a NN based online character recognition system. AdaBoost can
be used to learn automatically a great variety of writing styles even when the amount
of training data for each style varies a lot. The system achieves about 1.4% error on
a handwritten digit database of more than 200 writers.

In [87] the use of boosting and SVM is explored for the segmentation of white-
matter lesions in the MR scans of human brain. Simple features are generated from
proton density scans. Radial basis function-based AdaBoost technique and SVM
are employed for this task. The classifiers are trained on severe, moderate, and
mild cases. The results indicate that the proposed approach can handle MR field
inhomogeneities quite well.

A visual object detection framework that is capable of processing images
extremely rapidly while achieving high detection rates is proposed in [121].
The learning algorithm, based on AdaBoost, selects a small number of critical
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visual features and yields extremely efficient classifiers. The method combines
classifiers in a cascade allowing background regions of the image to be quickly
discarded while spending more computation on promising object-like regions. A set
of experiments in the domain of face detection is presented.

A framework for classifying face images using AdaBoost and domain-
partitioning based classifiers is addressed in [118]. The most interesting aspect
of this framework is its ability to build classification systems with high accuracy
in dynamical environments, which achieve, at the same time, high processing
and training speed. This framework is applied to the specific problem of gender
classification using different features, on standard face databases.

In [112] an approach for image retrieval using a very large number of highly
selective features and efficient online learning is proposed. This approach is
predicated on the assumption that each image is generated by a sparse set of visual
“causes” and that images which are visually similar share causes between them.
A mechanism for computing a very large number of highly selective features which
capture some aspects of this causal structure (with over 45,000 highly selective
features) is proposed. At query time a user selects a few example images, and
boosting is used to learn a classification function in this feature space. The boosting
procedure learns a simple classifier which only relies on 20 of the features. As a
result, a very large database of images can be scanned rapidly.

The boosting-based multimodal speaker detection (BMSD) algorithm is pro-
posed in [132]. It performs speaker detection, identifying the active speaker in a
video, which can be very helpful for remote participants to understand the dynamics
of the meeting. This algorithm fuses audio and visual information at feature level
by using boosting to select features from a combined pool of both audio and visual
features simultaneously. It achieves a very accurate speaker detector with extremely
high efficiency.

2.6.1.1 Online Boosting

In the recent years, some attention has been given to online boosting, in which the
training examples become available one at a time [4, 14, 23, 24].

A new family of topic-ranking algorithms for multilabeled documents is pro-
posed in [23, 24]. The algorithms are simple to implement being both time
and memory efficient. Experiments with the proposed family of topic-ranking
algorithms on standard corpora, show that these algorithms attain adequate results,
outperforming other topic-ranking adaptations of well-known classifiers.

The problem of online adaptation of binary classifiers for tracking is addressed
in [54]. Online learning allows for simple classifiers since only the current view of
the object from its surrounding background needs to be discriminated. However,
online adaptation has one key problem: each update of the tracker may introduce
an error which, finally, can lead to tracking failure (drifting). A novel online
semi-supervised boosting method which significantly alleviates the drifting problem
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in tracking applications was proposed in [54]. This allows to limit the drifting
problem while still staying adaptive to appearance changes. The main idea is to
formulate the update process in a semi-supervised fashion as combined decision of
a given prior and an online classifier without any parameter tuning.

A boosting framework that can be used to derive online boosting algorithms for
various cost functions was proposed in [4]. Within this framework, online boosting
algorithms for logistic regression, least squares regression, and multiple instance
learning are derived.

In [14] a real-time vision-based vehicle detection system employing an online
boosting algorithm is proposed. It is an online AdaBoost approach for a cascade
of strong classifiers instead of a single strong classifier. The idea is to develop a
cascade of strong classifiers for vehicle detection that is capable of being online
trained in response to changing traffic environments. The proposed online boosting
method can improve system adaptability and accuracy to deal with novel types of
vehicles and unfamiliar environments.

TransientBoost [108] is an online learning algorithm, which is highly adaptive
but still robust. It uses an internal multiclass representation and models reliable and
unreliable data in separate classes. Unreliable data is considered transient, and thus
highly adaptive learning parameters are applied to adapt to fast changes in the scene
while errors fade out fast. In contrast, the reliable data is preserved completely and
not harmed by wrong updates. The algorithm is applied successfully on the tasks of
object detection and object tracking.

2.6.2 Comparison with Other Machine Learning Techniques

In this section, we show some detailed experimental results comparing AdaBoost
variants, on well-known public domain datasets. We also describe some public
domain software packages with code for AdaBoost and its variants.

Table 2.3 briefly describes the datasets used in the experiments, shown by
increasing dimensionality. These datasets have several types of data and repre-
sent many different learning problems and are available from the UCI Reposi-
tory [8].3 We also have some datasets from bioinformatics (micro-array and gene
expression data)4 as well as datasets of the NIPS2003 FS Challenge5 namely,
Arcene, Madelon, Gisette, and Dexter.

The Leptograpsus Crabs dataset is from Ripley’s book [91], and is publicly
available at http://www.stats.ox.ac.uk/pub/PRNN/. The Crabs dataset is considered
as a two-class problem for male/female detection. The Phoneme6 dataset holds log-
periodograms to represent speech phonemes as used in [58].

3http://archive.ics.uci.edu/ml/datasets.html
4http://www.gems-system.org/
5http://www.nipsfsc.ecs.soton.ac.uk
6http://orange.biolab.si/datasets/phoneme.htm

http://www.stats.ox.ac.uk/pub/PRNN/
http://archive.ics.uci.edu/ml/datasets.html
http://www.gems-system.org/
http://www.nipsfsc.ecs.soton.ac.uk
http://orange.biolab.si/datasets/phoneme.htm
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Table 2.3 Datasets with binary problems used in the experiments: P and N are the number of
features and patterns, respectively. The datasets are shown by increasing dimensionality

Dataset P N Type of data / Classification problem

Crabs 5 200 Classify crabs by gender
Phoneme 5 5404 Speech phoneme classification
Abalone 8 4177 Predict the age of abalone from physical measurements
Pima 8 768 The Pima Indians diabetes detection
Contraceptive 9 1473 Predict the current contraceptive method choice
Hepatitis 19 155 Detect if patients lived or died from hepatitis
WBCD 30 569 Wisconsin breast cancer diagnostic database
Ionosphere 34 351 Radar data–signals returned from the ionosphere
SpamBase 54 4601 Sparse BoW data/classify email as SPAM or not
Madelon 500 4400 Float data/artificial dataset, highly nonlinear and difficult
Colon 2000 62 Colon cancer detection
Gisette 5000 13500 Dense integer/distinguish handwritten digits “4” and “9”
DLBCL 5470 77 Dense integer/Lymphoma detection from medical analysis
Leukemia 7129 72 Cancer detection from medical analysis
Example 1 9947 2600 Sparse BoW (subset of Reuters)/text classification
Arcene 10000 900 Dense integer/detect cancer versus normal patterns
Prostate Tumor 10509 102 Cancer detection from medical analysis
Dexter 20000 2600 Same data as Example 1 with 10053 distractor features

The Abalone and Pima Indians are well-known datasets from the UCI
Repository; their tasks is to predict the age of abalones from their shell
measurements and to predict the presence of Diabetes in the Pima Indians
population, respectively.

The Contraceptive dataset has the task to predict the current contraceptive
method choice, for married women who were either not pregnant or do not know
if they were at the time of interview. It is a subset of the 1987 National Indonesia
Contraceptive Prevalence Survey.

The task of Hepatitis dataset is to classify if patients lived or died from hepatitis,
given a set of medical analysis. The WBCD dataset is the well-known Wisconsin
breast cancer database. The Ionosphere dataset is a binary classification problem
on radar data; “good” radar returns are those showing evidence of some type of
structure in the ionosphere and “bad” returns are those that do not; their signals pass
through the ionosphere. The SpamBase dataset has sparse bag-of-words floating-
point data; the task is to classify email messages as SPAM or nonSPAM. We have
considered only the first 54 features which constitute a bag-of-words representation.
The Madelon dataset is an artificial problem of the NIPS2003 FS challenge7; it
is a difficult problem, because it is multivariate and highly nonlinear. The Colon,
DLBCL, Leukemia, and Prostate Tumor datasets deal with the problem of cancer
detection from microarray data.

7http://clopinet.com/isabelle/Projects/NIPS2003/#challenge

http://clopinet.com/isabelle/Projects/NIPS2003/#challenge
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In the case of Example 1,8 each pattern is a 9947-dimensional BoW vector.
The Dexter dataset has the same data as Example 1 (with different train, test, and
validation partitions) with 10053 additional distractor features, at random locations;
it was created for the NIPS 2003 FS challenge. For both datasets, the task is learn to
classify Reuters articles as being about “corporate acquisitions” or not.

The Arcene and Gisette datasets also belong to the NIPS2003 FS challenge, and
their tasks are: to distinguish cancer versus normal patterns from mass-spectrometric
data; to separate the highly confusable handwritten digits “4” and “9.”

2.6.2.1 Software Packages for Boosting Algorithms

There are several software packages, freely available online that include implemen-
tations of boosting algorithms:

• The GML AdaBoost Matlab Toolbox9 provides implementations of Real, Gentle,
and Modest AdaBoost.

• The ENTOOL Matlab Toolbox http://www.j-wichard.de/entool/ which has many
machine learning techniques and includes Real, Gentle, and Modest AdaBoost
from the GML Toolbox.

• A Java implementation is available at http://jboost.sourceforge.net/, including
AdaBoost, LogitBoost, RobustBoost, and BoosTexter.

• The well-known WEKA machine learning package includes AdaBoost.M1 and
MultiBoost classifiers, and it is available at http://www.cs.waikato.ac.nz/�ml/
weka/.

• A CCC implementation of the MPBoost algorithm, is available at this internet
address http://www.esuli.it/mpboost.

• An efficient CCC implementation of various boosting algorithms can be found
in http://www.stat.purdue.edu/�vishy/.

• An open-source implementation of BoosTexter10 (see Section 2.6.1) can be found
at http://code.google.com/p/icsiboost/.

• A BoostMetric implementation as well as other boosting algorithms are available
at http://code.google.com/p/boosting/.

• In http://cseweb.ucsd.edu/�yfreund/adaboost/index.html, we have a Java Applet
that shows how AdaBoost behaves during training.

• The generalized boosted regression models (GBM) implements extensions to Ad-
aBoost and gradient boosting machine. It includes regression methods for least
squares, absolute loss, quantile regression, logistic, Poisson, Cox proportional
hazards partial likelihood, and AdaBoost exponential loss. It is available at http://
cran.r-project.org/web/packages/gbm/index.html.

8http://svmlight.joachims.org/
9http://graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox
10http://www.cs.princeton.edu/�schapire/boostexter.html

http://www.j-wichard.de/entool/
http://jboost.sourceforge.net/
http://www.cs.waikato.ac.nz/~ml/weka/
http://www.cs.waikato.ac.nz/~ml/weka/
http://www.esuli.it/mpboost
http://www.stat.purdue.edu/~vishy/
http://code.google.com/p/icsiboost/
http://code.google.com/p/boosting/
http://cseweb.ucsd.edu/~yfreund/adaboost/index.html
http://cran.r-project.org/web/packages/gbm/index.html
http://cran.r-project.org/web/packages/gbm/index.html
http://svmlight.joachims.org/
http://graphics.cs.msu.ru/ru/science/research/machinelearning/adaboosttoolbox
http://www.cs.princeton.edu/~schapire/boostexter.html


72 A.J. Ferreira and M.A.T. Figueiredo

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Real AdaBoost Weights (M=1)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Real AdaBoost Weights (M=5)

Fig. 2.11 The weights assigned to each pattern, after training Real AdaBoost with M 2 f1; 5g
rounds (learners), on the Ionosphere dataset

The PRTools toolbox [36] available at http://www.prtools.org/prtools.html has
many machine learning techniques, but it lacks implementations on boosting
algorithms.11

2.6.2.2 Analysis of Training and Test Error

Figure 2.11 shows the weights of each pattern, after training Real AdaBoost with
M 2 f1; 5g rounds, on the Ionosphere dataset using 100 training patterns. Notice
that at the beginning of the first round, the weights have an uniform distribution with
1=N .

On the first few iterations, the weight of many patterns is changed in such a way
that we get a distribution which is quite different from the uniform.

11As of version PRTools 4.0, available at the time of this writing (July, 2011).

http://www.prtools.org/prtools.html
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Fig. 2.12 The training error and the test error for Gentle AdaBoost on the WBCD dataset, with
M D 15 learners

On Fig. 2.12, we have the TE and the test error of Gentle AdaBoost on the WBCD
dataset, as a function of the number of WLs.

We see that the TE drops fast on the first few iterations. Even after the TE reaches
zero, the test error continues to drop. Figure 2.13 shows the test error rates for Real,
Gentle, and Modest AdaBoost classifiers, on the WBCD and Pima datasets, as a
function of the number of WLs.

For these three classifiers, we have an adequate test set error rate on both datasets.
On the WBCD dataset, the best performance is achieved by Gentle AdaBoost and
for the Pima dataset Real AdaBoost attains the best results.

2.6.2.3 Comparison with Other Classifiers

The reported results in Table 2.4 are averages over ten different random replica-
tions of different training/testing partitions, for the standard datasets described in
Table 2.3. We compare Real, Gentle, and Modest AdaBoost with linear SVM [10,
20, 116] and K-nearest neighbor (KNN) [1] classifiers from the PRTools toolbox.
The linear kernel SVM classifiers are trained up to 20,000 iterations and the KNN
classifier uses K D 3 neighbors. Regarding AdaBoost variants we use the ENTOOL
toolbox with M D 15 WLs (tree nodes).
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Fig. 2.13 Test error rates for Real, Gentle, and Modest AdaBoost classifiers, on the WBCD and
Pima datasets

In many low and medium dimensional datasets, one of the AdaBoost variants
attains adequate results being better than SVM and KNN. However, for the higher-
dimensional datasets SVM and KNN tend to perform slightly better than these
AdaBoost variants.
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Table 2.4 Experimental comparison of three AdaBoost variants with linear SVM and 3-NN
classifiers. We show the average˙ standard deviation of the test set error rate, for ten runs with
different random training/test partitions on standard datasets of Table 2.3. The best results are in
bold face

Dataset Real Gentle Modest SVM 3-NN

Crabs 23.50˙ 11.56 23.50˙ 12.26 19.50˙ 12.12 5.50˙ 4.97 33.50˙ 15.28
Phoneme 24.45˙ 4.50 23.70˙ 3.25 23.90˙ 2.63 26.70˙ 2.49 22.90˙ 1.73
Abalone 26.25˙ 3.26 26.15˙ 3.12 25.65˙ 3.98 23.05˙ 4.56 28.55˙ 3.24
Pima 23.05˙ 3.35 22.20˙ 3.28 23.60˙ 2.17 25.85˙ 2.52 28.25˙ 3.50
Contraceptive 34.35˙ 4.45 34.50˙ 4.29 35.50˙ 3.06 37.95˙ 3.61 40.05˙ 3.20
Hepatitis 19.00˙ 5.80 22.25˙ 7.77 20.50˙ 9.92 25.25˙ 7.77 41.25˙ 7.38
WBCD 3.57˙ 1.81 2.40˙ 1.64 3.83˙ 2.24 4.80˙ 1.10 7.10˙ 1.28
Ionosphere 9.60˙ 5.02 7.60˙ 2.99 7.30˙ 2.36 12.70˙ 4.42 18.20˙ 2.86
SpamBase 14.60˙ 2.68 14.60˙ 3.11 14.10˙ 3.04 13.57˙ 2.39 18.33˙ 1.52
Madelon 50.12˙ 2.29 49.78˙ 1.98 49.45˙ 1.85 50.97˙ 1.85 50.58˙ 1.97
Colon 1.67˙ 5.27 1.67˙ 5.27 1.67˙ 5.27 13.33˙ 4.10 15.56˙ 6.70
Gisette 13.67˙ 1.59 11.06˙ 0.90 10.62˙ 1.51 7.79˙ 0.67 11.39˙ 1.81
DLBCL 14.00˙ 10.16 19.00˙ 9.94 17.00˙ 10.59 4.67˙ 4.22 18.67˙ 7.73
Leukemia 37.00˙ 17.51 37.00˙ 17.51 37.00˙ 17.51 11.00˙ 7.75 13.50˙ 9.44
Example 1 12.07˙ 2.62 9.62˙ 1.57 11.63˙ 1.42 4.30˙ 0.61 10.98˙ 1.13
Arcene 31.10˙ 6.26 32.00˙ 5.60 29.70˙ 6.36 31.00˙ 0.94 20.90˙ 6.06
Prost. Tumor 5.75˙ 4.87 7.25˙ 3.11 4.75˙ 4.03 3.50˙ 2.49 15.63˙ 4.87
Dexter 18.13˙ 3.07 15.30˙ 1.06 14.57˙ 1.66 10.10˙ 0.80 25.97˙ 4.63

2.7 Summary and Discussion

The AdaBoost algorithm (and its variants) has many practical advantages, which,
combined with theoretical guarantees, makes it a very attractive general purpose
learning method. On the practical side, boosting algorithms are simple to implement
and debug. The base learner and the number of iterations (learners) are the only two
important choices to be made.

AdaBoost had been shown to be resistant to overfitting, despite the fact that it can
produce combinations involving very large numbers of base classifiers. However,
recent studies have shown that this is not the case, even for base classifiers as simple
as decision stumps. The success of the boosting algorithms depends on the amount
of data available for training as well as on the type of WL.

There are dozens of variants for binary and multiclass problems that have been
proven successful on many problems. In recent years, the research on boosting
algorithms has been focused mainly on multiclass and semi-supervised problems.
The study of online boosting algorithms, in which the training examples arrive one
at a time, as contrary to the batch mode, is also a fruitful field of research with many
successful algorithms. Many of these algorithms are applied to real-time computer
vision problems, such as detection or tracking. This is a focus of intensive current
research.
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AdaBoost and its variants have also been combined with different machine
learning techniques, such as random subspaces [66], genetic algorithms [19], and
rotation forest [134].

2.8 Bibliographical and Historical Remarks

There are many papers and tutorials addressing the many boosting algorithms,
proposing variants for the multiclass case and/or SSL problems. In this section, we
point out some of these elements that can be found in the literature.

For the origins of boosting algorithms, one can be interested in reading about
the bootstrapping [37, 38] and bagging (bootstrap aggregation) [11]) techniques.
Bootstrap was initially proposed in 1982, but it regained interest in the decade of
1990–1999, in which bagging was proposed. The use of bagging for classification
problems is addressed in many papers, see [12, 13, 95, 139, 140] for many applica-
tions. The seminal paper of Schapire [95], proposing the first provable polynomial
time boosting procedure is a must read. For a comparison of the effectiveness of
randomization, bagging, and boosting see [29].

The seminal papers in the middle of the decade of 1990–1999 introducing
adaptive boosting (AdaBoost) algorithm [47, 48, 50], with the idea that we can
weight the data instead of resampling it, are also a must read. In the second half
of the decade 1990–1999, the AdaBoost algorithm was also extended for regression
tasks, as addressed in [3, 31], for instance.

From 1999 until this date, there are dozens of extensions and variants of
AdaBoost for supervised and semi-supervised binary and multiclass problems,
covering a wide range of successful applications. In this chapter, rather than the
theoretical aspects of boosting algorithms, we tried to cover as many variants and
successful applications as possible. Section 2.4 covers many variants for supervised
learning, whereas Section 2.5 addresses the semi-supervised variants on binary and
multiclass problems. In Section 2.6, we have described a wide range of applications.
The vast majority of these variants and successful applications were published in the
decade of 2000–2009. Online boosting, in contrast with batch boosting, has received
a great deal of attention in recent research; we covered many approaches for online
boosting on Section 2.6.1.1.

For further reading on adaptive boosting algorithms, please see [82], which
complements well this chapter. Whereas we have aimed at covering a wide range
of variants, [82] focuses more on theoretical and practical aspects of boosting and
ensemble learning. The webpage http://cbio.mskcc.org/�aarvey/boosting papers.
html has many papers, tutorials, and links to software on boosting algorithms. There
are also some tutorials about boosting available on-line.12;13

12http://www.site.uottawa.ca/�stan/csi5387/boost-tut-ppr.pdf
13http://www.stat.purdue.edu/�vishy/

http://cbio.mskcc.org/~aarvey/boosting_papers.html
http://cbio.mskcc.org/~aarvey/boosting_papers.html
http://www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf
http://www.stat.purdue.edu/~vishy/
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The web pages of boosting and adaptive boosting pioneers R. Schapire14 and
Y. Freund15 have many useful information about boosting algorithms, being useful
for both experienced researchers as well as to the new researchers entering this
exciting field.

Appendix A: Proofs

A.1: Proof of (2.4)

Consider the final weights, w.MC1/
i , and explicitly write the recursion that starts at

w.1/
i D 1=N (recall that Sj is the normalizing constant used in line 7 of Algorithm 4,

AdaBoost at iteration j )

w.MC1/
i D w.M/

i

exp .�˛M yi HM .xi //

SM

D
QM

jD1 exp
��˛j yi Hj .xi /

�
N
QM

jD1 Sj

: (2.12)

This can be re-written as

w.MC1/
i D

exp
�
�yi

PM
jD1 ˛j Hj .xi /

�
N
QM

jD1 Sj

D exp .�yi f .xi //

N
QM

jD1 Sj

; (2.13)

where f .x/ D PM
jD1 ˛j Hj .x/, from which we can conclude that

exp .�yi f .xi // D w.MC1/
i N

MY
jD1

Sj : (2.14)

Now, noticing that H.x/ D sign.f .x//, and recalling that h denotes the Heaviside
function (defined above), we have

h.�yi H.xi // D h.�yi f .xi // � exp .�yi f .xi // D w.MC1/
i N

MY
jD1

Sj : (2.15)

We can now write and bound the TE rate of H ,

TE D 1

N

NX
iD1

h.�yi H.xi // � 1

N

NX
iD1

w.MC1/
i N

MY
jD1

Sj D
MY

jD1

Sj ; (2.16)

because
PN

iD1 w.MC1/
i D 1, thus concluding the proof of (2.4). ut

14http://www.cs.princeton.edu/�schapire/boost.html
15http://cseweb.ucsd.edu/�yfreund/papers/index.html

http://www.cs.princeton.edu/~schapire/boost.html
http://cseweb.ucsd.edu/~yfreund/papers/index.html
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A.2: Proof of (2.5)

Let us plug the expression for ˛m (line 5 of AdaBoost) into the expression of
the normalizing factor Sm, and use the fact that yi Hm.xi / D 1, if and only
if Hm.xi / D yi , while yi Hm.xi / D �1, if and only if Hm.xi / ¤ yi ,

Sm D
NX

iD1

w.m/
i exp

�
yi Hm.xi / log

r
errm

1 � errm

�
(2.17)

D
r

errm

1 � errm

X
i WyiDH.xi /

w.m/
i C

s
1 � errm

errm

X
i Wyi¤H.xi /

w.m/
i (2.18)

D 2
p

errm.1 � errm/: (2.19)

Recalling that errm D 1=2 � �m, we have

Sm D 2

s�
1

2
� �m

��
1

2
C �m

�
(2.20)

D
q

1 � 4�2
m (2.21)

D exp

�
1

2
log

�
1 � 4�2

m

��
(2.22)

� exp
��2 �2

m

�
; (2.23)

where in (2.23) we have used the inequality log u � u � 1 (often referred to as the
Gibbs inequality). Plugging this inequality into (2.4), and invoking the assumption
�m > � , yields

TE � exp

 
�2

MX
mD1

�2
m

!
� exp

��2 M �2
�

(2.24)

thus proving inequality (2.5).
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Chapter 3
Boosting Kernel Estimators

Marco Di Marzio and Charles C. Taylor

3.1 Introduction

A boosting algorithm [1, 2] could be seen as a way to improve the fit of statistical
models. Typically, M predictions are operated by applying a base procedure—called
a weak learner—to M reweighted samples. Specifically, in each reweighted sample
an individual weight is assigned to each observation. Finally, the output is obtained
by aggregating through majority voting. Boosting is a sequential ensemble scheme,
in the sense the weight of an observation at step m depends (only) on the step m�1.
It appears clear that we obtain a specific boosting scheme when we choose a loss
function, which orientates the data re-weighting mechanism, and a weak learner.

In statistical inference kernel estimators can be regarded as the most used and
studied locally weighted learning procedures. They constitute a sound means to
address the three main inferential problems, i.e., density estimation—which can be
categorized as unsupervised learning, discrimination (where we predict labels) and
regression (where we predict real values)—which can be categorized as supervised
learning.

In the sequel, we will discuss boosting algorithms for density estimation,
regression, and classification; all of them use kernel estimators as weak learners.
To obtain the properties of our algorithms, we will see them as multistep estimators
and will derive some statistical properties of them. The main conclusion will be
that boosting has the potential to reduce the bias of kernel methods at the cost of a
slight variance inflation. Notice that we will treat point estimation problems, but not
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Algorithm 1 Discrete AdaBoost

1. Initialize wi .1/ D 1=N; 1 D 1; : : : ; N

2. For m D 1; : : : ; M

a. Estimate the classifier ım.x/ using weights w.m/

b. Compute the (weighted) error rate �m and bm D log 1��m

�m

c. Update the weights

wi .m C 1/ D
(

wi .m/ if Yi D ım.xi /

wi .m/.1 � �m/=�m otherwise

d. Normalize wi .m/ so that
P

i wi .m/ D 1

3. Output sign
P

m bmım.x/

confidence regions or hypothesis tests. In fact, Machine Learning does not focus
on these latter two. Nevertheless, because of boosting reduces bias, an usage of it
also for improving the coverage of pointwise confidence intervals appears promising
when, as it usually happens, the nominal coverage is reduce by a biased pointwise
estimator. For more on this, see [3]. For a more general treatment of boosting from
a statistical perspective, including existing software, see [4].

3.2 The Boosting Mechanism for Discrimination

Consider data .xi ; Yi /; i D 1; : : : ; N in which Yi 2 f�1; 1g denotes the class, and
ı.x/ denotes the classification of a (weak) learner. A proper boosting algorithm—
called Discrete AdaBoost [5]—follows.
Note that misclassified data are given higher weights, and that the final vote is
weighted in favor of the more successful classifiers.

We illustrate the above algorithm in two examples. Initially, we focus on the
concept of a weak learner. This, in the classification setting, is defined as a method
which has an expected error rate which is smaller than a random guess (in the case
of equal priors) or a default classifier (in the case of unequal priors). In the following
toy example, the distribution of the population (rather than weights assigned to
observations) is boosted.

3.2.1 Example 1: Data Without Noise

Suppose we have a categorical variable X which can take the values A; B; C and
that there are two classes with priors �i ; i D 1; 2. We have 23 possible partitions for
the classification rule (writing as class 1jclass 2):
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AjBC; BC jA; BjCA; CAjB; C jAB; ABjC; ABC j�; �jABC (3.1)

An example of a “weak learner” is one which must select a rule from the reduced
set of partitions:

AjBC; BC jA; C jAB; ABjC; ABC j�; �jABC; (3.2)

i.e., omitting the partitions which allocate only outcome B to one of the two classes.
Then, for any distribution of the two classes, on A; B; C we can always obtain an
error rate of at most 1=3. To see this, denote p1C D P.X D C jx 2 class1/, etc., so
that pkA C pkB C pkC D 1 for k D 1; 2. The worst case is when class 1 has support
AC and class 2 has support B (or vice versa). Then

p1A C p1C D 1; p2B D 1; p1B D p2A D p2C D 0 (3.3)

and at least one of the following partitions will give error rate less than 1=3:

Partition Error rate

AjBC �1p1C

BC jA �1p1A C �2

ABjC �1p1C C �2

C jAB �1p1A

ABC j� �2

�jABC �1

For example (first row), partition AjBC allocates x D C incorrectly. This occurs
with probability

P.X D C j X 2 class1/�1 D �1p1C : (3.4)

Similar calculations and check for each of the other rows verify the assertion that
we have constructed a weak learner, since the smallest error will be one of the first,
fourth, or fifth partitions.

To complete the illustration we use some numerical values for the distribution to
show the effect of boosting on the distribution weights. Suppose in our example that
p1A D 0:8 (so that p1C D 0:2) and �1 D 0:6 (so that �2 D 0:4). Then

p.x D A/ D 0:48; p.x D B/ D 0:4; p.x D C / D 0:12: (3.5)

Then the best first split is AjBC with error �1 D 0:12 which gives b1 D 1:99.
These values are displayed in the first row of the table below. The distributions
(instead of w) can be reweighted, with the next two partitions given in the table, with
consequent boosting constants, and classifiers. Thus, in the first row we allocate A to
class 1 .C/ and B and C to class 2 .�/ and the boosting constant 1.99 is multiplied
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by .1; �1; �1/. In the second row, 1.22 multiplied by .1; 1; 1/ is added to the current
classifier to yield .3:21; �0:77; �0:77/, and so on.

m Partition Error bm

P
bmım.x/ �m

1 AjBC 0.12 1.99 .1:99; �1:99; �1:99/ .12
2 CABj� 0.23 1.22 .3:21; �0:77; �0:77/ .12
3 C jAB 0.18 1.54 .1:68; �2:31; 0:77/ 0

After three iterations, the classifier
P

bmım.x/ has signs C; �; C, so that A and C

are classified to class 1 and B to class 2, as desired.

3.2.2 Example 2: Data with Noise

We continue to work with population (distribution)—corresponding to infinite
data—in a second illustration in which the goal is to learn a nonlinear boundary
using only linear splits. Consider two populations occupying squares on a mini-
chess board, where some of the squares are partially occupied by an amount E

(0�E<1); so that some squares can be shared by the two populations, representing
an overlap, or noise.

Class 1 Class 2

1 1 1 1 1 0 0 E 0 0
1 1 E 1 1 E 0 1 0 E
E 1 0 1 E 1 E 1 E 1
0 E 0 E 0 1 1 1 1 1

In this example, we consider a weak learner which can only split in the horizontal
or vertical direction, i.e., one of the following 30 splits shown as lines—each line
rep resents a possible split (though these are not all distinct in their effect):

* * * * *
* * * * *
* * * * *
* * * * *

We can see the development of the boosting algorithm (using a straightforward
implementation of Discrete AdaBoost, in which the distribution weights are
updated) for overlapping amount E D 0. The individual (step-wise) classifiers
are shown in Fig. 3.1, and the cumulative effect (after taking a weighted sum
according to the boosting coefficients bm, and taking the sign of the output) is also
shown. Hence, when E D 0 we can see that the exact partition is recovered after 12
boosting iterations.
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Fig. 3.1 Left: Individual (step-wise) classifiers of Discrete AdaBoost. Right: The cumulative effect
of Discrete AdaBoost

100

200

300

400

500

iterations

0 0.2 0.4 0.6 0.8
noise   E

Fig. 3.2 The number of
boosting steps required, as a
function of E , in the Discrete
AdaBoost algorithm

This example can be repeated for E > 0 and it is of interest to note the effect
that this has on the number of iterations required before the true partition is found.
Figure 3.2 shows the number of partitions as a function of E , before the Bayes
classifier is obtained. It can be seen there is very rapid growth in the number of
splits as E ! 1 since this represents squares with almost equal proportions of the
two classes.
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3.3 The Boosting Mechanism for Regression

We suppose data of the form f.xi ; Yi /; i D 1; : : : ; ng in which we want to predict Y

given X D x. A standard method is to use ordinary least squares, which then leads
to residuals. A naive attempt (not boosting) would be to use the residuals iteratively
in weighted least squares to refit the model. However, as can be seen in Fig. 3.3
below, this will not give useful results. There is a need to combine the lines, taking
account of m1.x/; : : : ; mB.x/, to make the iterations effective.

This is done in the following algorithm
Figure 3.4 illustrates the ingredients and the output of Algorithm 2. In particular,

the left panel shows the components of each iteration, whereas the right panel shows
their combination into the final prediction, which is very nonlinear.

3.3.1 Relation to “Mixtures of Experts”

As a generalization of standard mixture models in the regression context, the
mixtures of experts model was introduced in [6]. The basic idea for regression is
to use the EM algorithm to estimate a mixture proportion for each data point xi , i.e.,
for B mixtures:
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Fig. 3.3 Iteratively re-weighted least squares (3 iterations) of linear model
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Fig. 3.4 Left: Oy.b/
i ; b D 1; : : : ; 5. Right: Om.xi / (continuous line) and m.x/ (dashed line) (see

Algorithm 2)

Algorithm 2 Boosting linear regression

1. Set b D 1 and wb.xi / D 1=n; i D 1; : : : ; n

2. Fit Oy.b/
i D ˛.b/ C ˇ.b/xi by weighted least squares (with weights wb).

3. ei D yi � Oy.b/
i wbC1.xi / D e2

i ; renormalize weights.
4. increment b WD b C 1 and return to step 2 (until b D B).
5. Summarize the overall prediction

Om.xi / D
PB

bD1 wb.xi / Oy.b/
iP

wb.xi /

• estimate ˛.b/; ˇ.b/; b D 1; : : : ; B by weighted least squares
• estimate the mixing proportions �b.xi /; b D 1; : : : ; B; i D 1; : : : ; n, such that

X
b

�b.xi / D 1; i D 1; : : : ; n: (3.6)
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Algorithm 3 EM algorithm for mixture of Experts

1. Initialize �b.xi /; i D 1; : : : ; n; b D 1; : : : ; B

2. Iterate, until convergence:

2.1 M-step:

Ǫ .b/; Ǒ.b/ D arg min
nX

iD1

�b.xi /
�
yi � ˛.b/ � ˇ.b/xi

�2

then, denoting the residuals eb.xi / D yi � Ǫ .b/ � Ǒ.b/xi

�2 D 1

nB

BX
bD1

nX
iD1

�b.xi /eb.xi /
2

2.2 E-step:

�b.xi / D 1

Si

exp

�
� 1

2œ2
eb.xi/

2

�
; i D 1; : : : ; n; b D 1; : : : ; B

where Si D PB
bD1 exp

˚� 1
2�2 eb.xi /

2
�

; i D 1; : : : ; n

3. Summarize the overall prediction

Om.xi / D
BX

bD1

�b.xi /
�

Ǫ .b/ C Ǒ.b/xi

�
; i D 1; : : : ; n

This can be done via an iterative procedure, which maximizes the likelihood,
giving the parameter estimates ˛.b/; ˇ.b/; b D 1; : : : ; B , and estimates the mixing
proportions �b.xi /; b D 1; : : : ; B; i D 1; : : : ; n. using the EM algorithm as follows.

Convergence using the EM algorithm is usually fast but the starting point is
critical. Using the previous example we obtain the result in Fig. 3.5. An obvious
problem, in general, is how to choose the number of mixtures, B . Moreover, the
figure illustrates the effect of different choices of starting values—a well known
issue for EM algorithms.

3.4 Main Definitions in Kernel Methods

Kernel methods can be regarded as an established way to nonparametrically
face the three main inferential problems, i.e., density estimation, (which can be
categorized as unsupervised learning), discrimination, and regression (which can
be categorized as supervised learning). Each of these themes has had its own
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Fig. 3.5 Top: three-component model with mixtures. Bottom: EM components and final prediction
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historical development. The term nonparametric indicates that the estimate is not
found within a parametric class, but within a smoothness class, like, for example,

the Sobolev space
n
f W R .f 00/2

< 1
o

where f is a smooth enough function.

Surely, these latter classes are very wide if compared to the usual parametric ones.
From a practical view, nonparametric curve estimation could be considered as a
set of locally weighted learning procedures. Other than kernels, well-established
nonparametric methods are histograms, wavelets, and splines.

In what follows, we will outline the basics of the standard kernel theory in one
dimension, see [7] for a book-length introduction. We will see that kernel estimators
could be significantly biased. So improving a naive kernel estimator usually means
bias reduction without strong variance inflation.

3.4.1 Density Estimation

Given observations x1; : : : ; xn from a random sample drawn from an unknown
probability density function f , the kernel density estimate of f at x is

Of .x/ D 1

nh

nX
iD1

K
�x � xi

h

�
or

1

n

nX
iD1

Kh .x � xi / (3.7)

where h > 0 is a smoothing parameter, and the real valued function K is called the
kernel, usually being a density unimodal and symmetric around zero.

Many kernel functions are possible, but the choice of h is much more important,
and often not easy. Two obvious measures of goodness of estimation—pointwise
and global, respectively—are:� Of .x/ � f .x/

�2

and
Z � Of .x/ � f .x/

�2

dx (3.8)

to characterize the efficiency of a nonparametric estimator most researchers have
considered the choice of h (and K) to minimize the expected losses

MSE.x/ D E
� Of .x/ � f .x/

�2

and MISE.x/ D
Z

E
� Of .x/ � f .x/

�2

dx

(3.9)

where the expectations suppose that the xi s are observations from a random sample
drawn from f . But using second-order Taylor series expansions, we are able to
obtain approximate bias and variance as simple functions of h. In particular, for
small h we have:

E Of .x/ D 1

h

Z
K
�x � y

h

�
f .y/dy (3.10)

D f .x/ C h2

2
f 00.x/�2.K/ C O.h3/ (3.11)
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(given
R

zK.z/dz D 0) where �2.K/ D R
z2K.z/dz. Similarly, for large n and such

that h ! 0; n ! 1; nh ! 1 we have:

var Of .x/ D 1

n

�
1

h2

Z
K2

�x � y

h

�
f .y/dy � .f .x/ C o.h//2

�
(3.12)

D f .x/

nh

Z
K2.z/dz C o

	
1

nh



: (3.13)

So, as h ! 0 the bias vanishes, but the variance becomes infinite, and as h ! 1
the variance vanishes, but the bias becomes infinite. An asymptotic mean squared
error is therefore (omitting smaller terms in the Taylor series):

AMSE.x/ D var Of .x/ C
�

bias Of .x/
�2

(3.14)

D f .x/

nh
R.K/ C h4

4
f 00.x/2�2.K/2 (3.15)

where R.K/ D R
K2.z/dz. We can minimize this (over h) to find the optimal value

h D
	

f .x/R.K/

f 00.x/2�2.K/2n


1=5

.f 00.x/ ¤ 0/ (3.16)

which depends on the known quantities K and, n and on the unknown quantities
f .x/ and f 00.x/. In a similar way, we can get the optimal value with respect to the
AMISE, which is defined as the integral of AMSE over the density support

h D
	

R.K/R
f 00.x/2dx �2.K/2n


1=5

; (3.17)

which depends on the known quantities K and n, and on the unknown quantity
f 00.x/. A common objection is that kernel density estimation is an ill-posed problem
because the estimation of f 00.x/ is an intermediate step to estimate f . A common
approach is to use a normal reference rule whereby f is assumed to be gaussian. If
we also use a gaussian kernel this leads to the choice h D 1:06sn1=5 where s is the
sample standard deviation.

Various methods have been suggested by which the bias can be reduced. In
the above calculations, the bias is of order O.h2/. This term arises becauseR

z2K.z/dz > 0. Selecting K so that
R

z2K.z/dz D 0 would lead to bias of order
O.h4/, and such kernels are known as higher-order kernels. The inconvenience of
these kernels are that they are not densities, and so they lead to Of which are not pdfs
(since they can be negative). Moreover, although they have small asymptotic bias,
various research indicates that the gain is rather modest unless n is very large.
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A so-called multiplicative approach to bias reduction can also be used. Jones
et al. [7] proposed the following variable-kernel estimator and this gives nonnegative
estimates, which, however, do not integrate to 1. The name multiplicative originates
from the fact that the overall estimator is the product of the standard kernel (here ef )
and a second estimate. The second estimate is a weighted sum, with weights given
by the inverse of the first estimate. Regarding the smoothing setting, Jones et al.
[7] say that h should be the same in ef .x/ as in Of .x/.

3.4.2 Density Classification

The discrimination problem could be regarded as the task of predicting a categorical
variable, i.e., the label j of a class ˘j , to which an observations is supposed
to belong. We indicate the j th class density as fj . Given G � 2 classes with
respective prior membership probabilities �1; : : :; �G , the posterior probability of
the observation xi being from the j th class, is (using Bayes’ rule):

P
�
xi 2 ˘j jxi D x

� D �j fj .x/

,
GX

j D1

�j fj .x/ : (3.18)

Bayes’ classifier (which is optimal) allocates an observation to the class with highest
posterior probability.

Typically, the priors are estimated by the sample proportions or other external
information. But the main difficulty in using this optimal rule is that the fj .x/ are
unknown. An obvious method is to operate a kernel density estimate for each fj .x/.

In the sequel we will focus on the case of two classes (G D 2), which amounts
to the estimation of the intersection points of the population densities. It should
be remarked that intersection estimation does not involve the usual zero-one loss,
but a real-valued one. In the case of equal priors, it is sufficient to find all x0

for which f1.x0/ D f2.x0/. Therefore, we are aimed to estimate the difference
g.x/ D f1.x/�f2.x/ by using Of1.x/� Of2.x/. Here, once more, the crucial question
is to set a smoothing degree specific to the discrimination problem, for more details
see [8].

3.4.3 Regression

Given a double random variable .X; Y /, our aim is to predict the continuous
variable Y by observing X . Therefore, given data f.x1; Y1/; : : :; .xn; Yn/g, the
kernel estimator—also called Nadaraya–Watson (NW) estimator—of the regression
function m at x is so defined:

Om.x/ D
1
n

P
Kh .x � Xi/ Yi

1
n

P
Kh .x � Xi /

D Or.x/

Of .x/
; say (3.19)
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the idea is to operate a kernel estimate of the conditional mean

m.x/ D E.Y j X D x/ D
R

yf .x; y/ dy

f .x/
(3.20)

where f .x; y/ denotes the joint density of the distribution of .X; Y / at .x; y/.
According to a different interpretation, kernel regression consists of fitting constants
using a locally weighted training criterion. In both cases, local learning here means
that the estimated regression will tend to match the responses as h ! 0.

Using Taylor series expansions again we have

E Or.x/ D
“

Kh.x � u/yf .u; y/ dudy D
Z

Kh.x � u/r.u/ du (3.21)

� r.x/ C h2

2
r 00.x/�2.K/ (3.22)

which leads to

E Om.x/ D Or.x/

Of .x/
�
 

r.x/ C h2

2
r 00.x/�2.K/

! 
f .x/ C h2

2
f 00.x/�2.K/

!�1

C o.h2/

(3.23)

and so the bias in Om.x/ is

h2�2.K/

2

	
m00.x/ C 2m0.x/f 0.x/

f .x/



C o.h2/: (3.24)

Similar calculations give the variance as

1

nh

�2.x/

f .x/
R.K/ C o

	
1

nh



; (3.25)

where �2.x/ is the conditional variance. We easily see that the regression curve
is more stable (lower variance) when there are more observations, and that the
bias-squared is dominated by the second derivative m00.x/ (close to a turning point)
or by m0.x/ when there are few observations.
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3.4.4 Cumulative Distribution Function Estimation

Define the kernel cumulative distribution function (CDF) estimator as the integral
of the kernel density estimate:

OFh.x/ D
Z x

�1
Ofh.u/du (3.26)

and, if we use a normal kernel, this is simply

OFh.x/ D 1

n

nX
iD1

˚
�x � xi

h

�
; (3.27)

where ˚.�/ is the CDF of a standard normal. If h ! 0, the kernel density estimate
becomes a sum of Dirac delta functions placed on the data, which then yields the
empirical CDF

OF0.x/ WD lim
h!0

OFh.x/ D 1

n

nX
iD1

I Œxi � x�: (3.28)

If f is smooth enough and K .�/ is symmetric, the expectation admits the second
order expansion

E OFh.x/ D F.x/ C h2

2
�2f 0.x/ C O

�
h4
�

; (3.29)

where �k D R
K.x/xkdx, and this shows that OF0.x/ is unbiased.

Incidentally, note that

var
� OF0.x/

�
D F.x/.1 � F.x//

n
(3.30)

which means that, we do not get infinite variance (unlike the pdf estimation case) if
h ! 0. In fact, it is known that OF0.x/ is the unbiased estimator of F.x/ with the

smallest variance. What about var
� OFh.x/

�
for h > 0? If we use a Normal kernel,

we can calculate

var
� OFh.x/

�
D 1

n

"
E˚

	
x � X

h


2

� E2˚

	
x � X

h


#
: (3.31)
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Since

E

Z
K

	
x � X

h



� F.x/ C h2

2
�2.K/f 0.x/ (3.32)

and, using a Normal kernel we have

E˚

	
x � X

h


2

� F.x/ � hf .x/p
�

(3.33)

we then obtain

var
� OFh.x/

�
� F.x/.1 � F.x//

n
� hf .x/

n
p

�
: (3.34)

In conclusion, OFh can have smaller mean squared error than OF0. Notice that an
alternative way to obtain (nonbona fide) estimates of the CDF by regressing OF0.xi /s
on xi s.

3.5 Boosting Kernel Estimators

In this section we will present various boosting algorithms, one for each kernel
method discussed in the previous section. We will focus on the unidimensional case,
for the multidimensional setting see [9].

In the cases of density estimation and discrimination, our algorithms repeat-
edly call, M times, a kernel estimator to iteratively estimate using reweighted
kernels. The first weighting distribution is uniform, whilst the mth distribution
fwm .i/ ; i D 1; : : : ; ng with m 2 Œ2; : : : ; M � is determined on the basis of the
estimation resulting from the .m � 1/th call. The final sequence of estimates is
summarized into a single prediction rule which should have superior standards of
accuracy. The weighting distribution is designed to associate more importance to
misclassified data (for discrimination) or with a poor density estimate through a
proper loss function. Consequently, as the number of iterations increases the “hard
to classify” observations receive an increasing weight.

Concerning regression, the boosting scheme is different because we iteratively
add smooth of residuals.

A number of case studies will practically confirm that the typical boosting
iteration will reduce the bias but slightly inflate the variance. In our simulations,
we will explore the optimal smoothing parameter for each choice of M , In practical
applications, it is common to use cross-validation to select the pair .h; M /.
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Algorithm 4. Boosting a kernel density estimate

1. Given fxi ; i D 1; : : : ; ng ; initialise w1.i/ D 1=n; i D 1; : : : ; n, Select h.
2. For m D 1; : : : ; M , obtain a weighted kernel estimate,

Ofm .x/ D
nX

iD1

wm .i/

h
K
�x � xi

h

�
;

and update weights according to wmC1.i/ D wm.i/ C log
� Ofm.xi /

. Of
.i/

m .xi /
�

:

3. Provide as output

MY
mD1

Ofm.x/;

renormalised to integrate to unity.

3.5.1 Boosting Density Estimation

Standard kernel density estimator could be seen as a single-step boosting algorithm
where all of the kernels have the same weight w.i/ D 1=n.

Of .x/ D 1

h

nX
iD1

w.i/K
�x � xi

h

�
: (3.35)

In order to boost, we propose a loss function which compares Of .xi / with the leave-
one-out estimate

Of .i/.xi / D n

n � 1

	
Of .xi / � K.0/

nh



: (3.36)

Boosting then reweights the kernels using a log-odds ratio, i.e., log
� Of .xi /=

Of .i/ .xi //.
Our pseudocode for boosting a kernel density estimate is given in Algorithm 4.
To formally appreciate how the algorithm works, it is sufficient to analyze the

first iteration. Recalling the definition of Of .i/.xi /, we then have

w2.i/ D w1.i/ C log

 Of1.xi /

Of
.i/

1 .xi /

!
(3.37)

� 1

n
C K.0/

nh Of1.xi /
C log

	
n � 1

n



� K.0/

nh Of1.xi /
(3.38)

and so w2.i/ � Of1.xi /
�1. Hence, after one step we have Of .x/ D c Of1.x/ Of2.x/.
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This is essentially equivalent to the variable-kernel estimator of [7] in which the
bias is reduced to O.h4/. So boosting (one-step) a kernel density estimate reduces
the bias. For more details, see [10].

3.5.1.1 Simulation Examples

In this simple example, we investigate how the choice of M affects the optimal
choice of h, and how the average integrated squared error changes with these two
choices. We use the average over all simulations of the integrated squared error,
MISE, as a criterion.

Figure 3.6 shows MISE(h) for various values of M and for standard normal
and beta populations. We can see that larger smoothing parameters are required for
boosting to be beneficial; this corresponds to the “weak learner” concept in which
boosting was originally proposed. The optimal value is M D 13 with corresponding
optimal smoothing parameter h D 3:47. This represents a reduction in MISE of more
than 71% compared with the optimal value (using h D 0:51) for the usual estimator,
with M D 1. In the beta example, the optimal value is M D 23 with corresponding
optimal smoothing parameter h D 1:22. This represents a reduction in MISE of
more than 15% of the optimal value (using h D 0:11) for the usual estimator, with
M D 1. In both cases improvement due to boosting is diminishing with subsequent
iterations, with most of the benefit being obtained at the second iteration. The
inferior performance in the beta case is due to the fact that the beta density has
a limited support, and, as is well known, local estimates are less efficient at the
boundaries. This, in turn, causes a bad estimate at the first boosting step. Then in
the subsequent steps the algorithm has usually failed to recover those inefficiencies,
being often diverted toward different shapes. We can conclude that when a density
is difficult to estimate a bigger sample size is needed to make boosting worthwhile.
In the extreme case of the claw density (the results are not reported here), we have
observed that boosting starts to be beneficial only for sample sizes bigger than 500.
For examples on thick-tailed, bimodal, and skewed populations see [10].

3.5.2 Boosting Classification

Assume a two-class discrimination problem, the first problem in which the boosting
algorithm has been conceived. Friedman et al. [11] propose Real AdaBoosting in
which the weak classifier yields a membership probability, not a binary response.
Its loss system gives xi a weight proportional to

Vi D
s

min .p.xi 2 ˘1/; p.xi 2 ˘2//

max .p.xi 2 ˘1/; p.xi 2 ˘2//
(3.39)
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Fig. 3.6 For 500 samples of
size n D 50, the average
integrated squared error is
shown as a function of the
smoothing parameter h for
various values of the boosting
iteration M . The dashed line
joins the points
corresponding to the optimal
smoothing parameters for
each boosting iteration.
Underlying distributions: top
N.0; 1/; bottom Beta.2; 2/

if xi is correctly classified, and proportional to V �1
i if xi is misclassified. Because

kernel classification (KC) estimates densities in order to classify, Real AdaBoost
seems the natural framework for boosting KC, whereas discrete mappings do not
employ the whole information generated by a KC, but only the resulting sign.

Our pseudocode for Real AdaBoost KC is given in Algorithm 5.
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Algorithm 5. Boosting a kernel density classifier

1. Given f.xi ; Yi /; i D 1; : : : ; N g ; initialize w1 .i/ D 1=N; i D 1; : : : ; N .
2. Select hJ ; J D 1; 2.
3. For m D 1; : : : ; M

(i) Obtain a weighted kernel estimate using

bf J;m .x/ D
X

i WYi DJ

wm .i/

hJ

K

	
x � xi

hJ



for J D 1; 2:

(ii) Calculate

ım .x/ D 1

2
log .pm=.1 � pm// :

where pm.x/ D bf 2;m.x/
.�bf 1;m.x/ C bf 2;m.x/

�
(iii) Update:

wmC1.i/ D wm.i/ �
(

exp .ım.xi // if Yi D 1

exp .�ım.xi // if Yi D 2

4. Output

H .x/ D sign

"
MX

mD1

ım .x/

#

Note that bf J;m.x/ does not integrate to 1 (even for m D 1); so in effect, we are
considering �j fj .x/ (with �j D nj =N ) in our estimation. Note also that we do not
need to re-normalise the weights because we consider the ratio Of2;m.x/= Of1;m.x/ so
any normalization constant will cancel.

It is possible to prove that this algorithm gives an estimator of a frontier point
(i.e., the point where f1 D f2) which is smaller biased. The initial classifier is
(assuming equal priors):

ı1 D 1

2

h
log Of2;1 � log Of1;1

i
(3.40)

D 1

2

�
log

�
f2

f1

�
C h2

2f 00
2

2f2

� h2
1f 00

1

2f1

C O.h4
1/ C O.h4

2/

�
(3.41)



106 M. Di Marzio and C.C. Taylor

so when f1.x/ D f2.x/ D f .x/, say, we have

�1.x/ D h2
2f 00

2 .x/ � h2
1f

00
1 .x/

4f .x/
: (3.42)

Then at the next iteration,

Of1;2 .x/ D
Z

1

h1

K

	
x � y

h1


vuut Of2;1.y/

Of1;1.y/
f1.y/dy; (3.43)

Of2;2 .x/ D
Z

1

h2

K

	
x � y

h2


vuut Of1;1.y/

Of2;1.y/
f2.y/dy: (3.44)

This leads to (up to terms of order h2):

ı2.x/ D 1

2

(
.h2

1 � h2
2/

8

	
f 0

1 .x/

f1.x/
� f 0

2 .x/

f2.x/


2

C .h2
2 C h2

1/

4

	
f 00

1 .x/

f1.x/
� f 00

2 .x/

f2.x/


)
(3.45)

which gives an updated classifier ı1.x/ C ı2.x/.
Noting that, near the point of interest, f1.x/ � f2.x/ D f .x/, say, we have

�2.x/ D �1.x/

2
C h2

2f
00

1 � h2
1f

00
2

8f
C �

h2
1 � h2

2

� 	f 0
1 � f 0

2

4f


2

: (3.46)

Now letting h1 D h2, we see that �2.x/ D O.h4/. That boosting reduces the bias
comes as no surprise, but it is somewhat counterintuitive that the bias reduction is
enhanced by taking equal smoothing parameters. For more details, see [8].

3.5.2.1 A Simulation Example

We use f1 D N.0; 42/; f2 D N.4; 12/ with n1 D n2 D 50 and 500 simulations.
For these densities, we focus on the primary intersection point: x0 D 2:243 where
f1.x0/ D f2.x0/ D :0852. We compare various methods in which the strategy is to
estimate Ox0, and then use this as a decision boundary (ignoring the other solution in
the other tail). We consider LDA, and various density estimates for the two groups,
in which the smoothing parameter is obtained by a Normal reference rule (Fixed
plug-in), an adaptive smoother [12], a fourth-order kernel, and the multiplicative
estimator of [7]. The results are given in Table 3.1. It can be seen that LDA behaves
poorly since this method assumes equal variances (which would give an expected
bias of �0:243), and that the higher-order kernels all perform similarly. The Bayes
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Table 3.1 Left: Estimation of main intersection boundary between N.0; 42/ and N.5; 12/

by various kernel methods and linear discriminant, based on 500 samples of size n1 D
n2 D 50. Right: Resulting error rates, given as an exceedence over Bayes rule � 100

Method Bias SD MSE Method Mean SD

LDA �0.2882 0.3021 0.1743 LDA 1.1315 1.2100
Fixed plug-in �0.1630 0.2354 0.0820 Fixed plug-in 0.5774 0.7116
Abramson 0.0190 0.2425 0.0592 Abramson 0.4856 0.7182
Fourth-order �0.0793 0.2332 0.0607 Fourth-order 0.4542 0.6080
Jones 0.0154 0.2389 0.0573 Jones 0.4675 0.7165
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Fig. 3.7 Top: Estimation of x0 by boosted kernel density estimates, where Ox0 D arg Of1.x/ D
Of2.x/, versus number of boosting iterations M . Continuous line uses Normal plug-in rule; dashed

line is plug-in rule �2. Bottom: Consequent error rate for the classifier as a function of boosting
iteration

rule gives error rate �100 D 16:3, and Table 3.1 shows the inflation in error rate for
the various methods. Again, the higher-order kernels all perform in a similar way,
and substantially better than LDA.

For the same example, we again consider estimation of x0, and consequent error
rate, for a standard kernel density estimator in which the smoothing parameter is
based on the normal-reference plug-in rule. However, we now consider boosting
the kernels as described above. Figure 3.7 shows the dependence on the number
of boosting iterations, and illustrate the fact that the performance of boosting is
affected by the choice of smoothing parameter. In this case, using larger smoothing
parameters (and so making a weaker learner) can lead to an improved performance.
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Algorithm 6. Boosting kernel regression

1. (Initialization) Given data S D f.xi ; yi /; i D 1; : : : ; ng and h > 0, let

bm0 .xI h/ WD bmNW .xI S; h/ :

2. (Iteration) Repeat for b D 1; : : :; B

(i) ei WD Yi � bmb�1 .Xi I h/ i D 1; : : :; nI
(ii) bmb .xI h/ WD bmb�1 .xI h/ C bmNW .xI Se; h/, where Se D f.Xi ; ei /; i D

1; : : : ; ng.

3.5.3 Boosting Regression

Our strategy here is to use kernel regression as the fitting method within an L2

boosting algorithm. L2 boosting is a procedure of iterative residual fitting where the
final output is simply the sum of the fits. Formally, consider a weak learner M .
An initial least squares fit is denoted by M0. For b 2 Œ1; : : : ; B�, Mb is the sum of
Mb�1 and a least squares fit of the residuals Se WD fXi; ei WD Yi � Mb�1 .Xi/g.
The L2 boost estimator is MB .

For those who are interested in the historical roots of boosting in the regression
context it is worth noting Tukey [13]. He considered the residuals from the smooth
of the data, and coined the name “twicing.” His suggestion for an iterative procedure
(which we can see today as equivalent to many boosting iterations) is somewhat
obscure at first read:

“then we get a final smooth whose rough is precisely the rough of the rough of the original
sequence—hence the name Reroughing” . . . “Twicing” or use of some specified smoother
twice, is just a special case of reroughing. . . . One natural thing is to smooth again

The scheme is visualized in Fig. 3.8. Our pseudocode for L2 boosting of kernel
regression is given in Algorithm 6.

To formally study the algorithm properties, some preliminary notation is needed,
as follows. The NW estimates at the observation points are compactly denoted as

bm0 D NKy (3.47)

where

bmT
0 WD. Om0.x1I h/; : : :; Om0.xnI h//;

N �1 WDdiag

 (
nX

iD1

Kh.x1 � xi /

)
; : : : ;

(
nX

iD1

Kh.xn � xi /

)!
;
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Input

Initial Smooth

Initial rough

Final smooth

Final rough

+

Twicing (John Tukey, 1977)

Fig. 3.8 Twicing. From Tukey (1977) Exploratory Data Analysis

yT WD.y1; : : :; yn/ and

.K /ij WDKh.xi � xj /:

Concerning the algorithm accuracy, Di Marzio and Taylor [14] show what follows.

ave-bias2 D 1

n
mT

�
U �1

�T
diag

�
.1 � 	k/bC1

�
U T U diag

�
.1 � 	k/bC1

�
U �1m;

(3.48)

ave-var D �2

n
tracen

U diag
�
1 � .1 � 	k/bC1

�
U �1

�
U �1

�T
diag

�
1 � .1 � 	k/bC1

�
U T

o
:

(3.49)

where 	1; : : :; 	n are the characteristic roots of NK , b � 0, with at least one smaller
than 1, and U is a n�n invertible matrix of real numbers. Moreover, if spec.NK / 	
.0; 1�, then

lim
b!1ave-bias2 D 0;

lim
b!1ave-var D �2;

lim
b!1ave-MSE D �2:

Quite remarkably, not all of the kernels match above condition about the char-
acteristic roots. Gaussian and triangular kernels meet the condition, whereas
Epanechnikov, biweight, and triweight do not.
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3.5.3.1 Simulated Example

We used n D 200 fixed design points from Œ�1:8; 1:8�, and simulate yi D xi C
2 exp.�16x2

i / C "i , with "i � N.0; 0:22/. Using a bandwidth of 0:16, in Fig. 3.9 we
illustrate the effect of boosting NW estimate over three iterations.

Over 10,000 simulated datasets from the above model, we can find the residual
sum of squares to the expected value of Y as a function of smoothing parameter and
number of boosting iterations. The results are shown in Fig. 3.10. It can be seen that
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the optimal number of boosting iterations depends on the smoothing parameter. We
again note that the optimal setting is to weaken the NW estimate by using a larger
smoothing value, together with many boosting iterations.

3.5.4 Generalizations

Let H D .h0; : : : ; hB/; ˚ D .�0; : : : ; �B/ be vectors of smoothing parameters and
weights, respectively, then

K ˚
H D

BX
j D0

�j Khj (3.50)

is a weighted sum of kernel functions. The kernel used in Algorithm 2 when B D 1

is a special case of this formulation with ˚ D .2; �1/ and H D .h;
p

2h/. We can
thus generalize bmB to

bmg.xI S; 
/ WD
BX

j D0

�j

P
Khj .x � Xi /YiP
Khj .x � Xi /

D
BX

j D0

�jbmNW.xI S; hj / (3.51)

in which 
 D .˚; H/ D .�0; : : : ; �B; h0; : : : ; hB/ includes all the required
parameters. This is simply a linear combination of N–W estimators, each with
its own bandwidth. Similar proposals were considered by [15] and [16] who used
weighted combinations of kernels to improve estimators at the boundary. In order forbmg to be asymptotically unbiased, we require

P
�j D 1. Given a set of bandwidths

H D .h0; : : : ; hB/ we can choose the �j to eliminate the bias terms which arise as
a consequence of �k D R

vkK.v/ dv.
Since we have used a Normal kernel, for a given bandwidth h we have �2k / h2k ,

and �2k�1 D 0 so a simple approach to obtain the weights �j would be to set
H D �

h;
p

ch; : : : ; cB=2h
�

for some c, and then to solve C˚ D .1; 0; : : : ; 0/T for
˚ , where (for B � 1)

C D

0
BBB@

1 1 � � � 1

1 c � � � cB

:::
:::

:::
:::

1 cB � � � c2B�1

1
CCCA (3.52)

and this simplification requires the selection of only two parameters (c and h), for
a given B . Note that the above convolution kernel K�

h uses c D 2, and that the
solution for ˚ gives the desired value .2; �1/.

As an alternative approach, we could consider obtaining the �j by estimation
through an ordinary least squares regression, i.e., obtain ˚ from b̊ D
.XT X/�1XT Y where Y D .Y1; : : : ; Yn/ is the vector of responses, and the j th
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Algorithm 7. L2 boosting a kernel CDF estimate

1. (Initialization) Given x1; : : :; xn,

(i) define the responses Yi D bF 0 .xi / ; i D 1; : : : ; n;
(ii) select h > 0;
(iii) calculate 0

bF h .x/ D Om.x; fYi g/.
2. (Iteration) For m D 1; : : : ; M

(i) compute the residuals ei D Yi � m�1
bF h .xi / ; i D 1; : : : ; nI

(ii) calculate Om .x; fei g/;
(iii) update m

bF h .x/ D m�1
bF h .x/ C Om .x/ :

column of the matrix X is given by
�bmNW.X1I S; hj /; : : : ;bmNW.XnI S; hj /

�T
. This

approach could also allow for the selection of B through standard techniques in
stepwise regression. Also, note the connection between (3.51) and a radial basis
function (RBF) representation. In this framework the �j are the weights, and
mNW.xI S; hj / act as “basis functions” which are themselves a weighted sum of
basis functions. So this formulation is equivalent to a generalized RBF network, in
which an extra layer is used to combine estimates, but with many of the weights
being fixed.

Many questions arise. How similar will bmg be to the boosting estimate bmB , and
for which value of c is the correspondence closest? How would we choose H (or h

and c) in practice, i.e., from the data? Which estimator is “best”? Which is the best
way to obtain ˚? etc. Similar work by [17] on the use of higher-order kernels could
provide some of these answers for the fixed, equispaced design. However, in several
simulation experiments, we have not been able to obtain any method of selection
of �j ; hj ; j D 0; : : : ; B for which bmg performs better than the boosting estimatesbmk for equivalent B � 2.

3.5.5 Boosting Cumulative Distribution Function Estimation

As said before, we could also estimate the CDF by regression on empirical CDF
values. So, it theoretically becomes feasible to employ L2 boosting also to get
improved CDF estimates. We do this in the algorithm below.

Because of the weak learner is a basic regression estimator, we notice that
Algorithm 7 may give estimates of F.x/ which are not bona fide, i.e., they can
locally decrease or violate 0 � OF .x/ � 1. Surely for sample sizes big enough this
problem tends to disappear.
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3.5.5.1 Simulation Example

In the following simulation experiment, we will compare OF0.x/, OFh.x/, and m
OFh.x/

for m D 0; 1; 2; : : : (see Fig. 3.11).
In Fig. 3.12, we simulate 100 datasets of size n D 1;000 from a standard

Normal distribution and compare MSE for: (1) empirical CDF; (2) smoothed
CDF; (3)–(5) kernel regression; and two boosted versions. The results are shown
in Fig. 3.12. Once again it can be seen that boosting can be effective when the
smoothing parameter is larger (and hence the learner is weaker). Also of interest,
we note that the regression estimates perform slightly better than the more standard
(unbiased) empirical CDF and smoothed versions of it.

3.6 Bibliographical and Historical Remarks

Two surprising links to previous work have arisen. The first one concerns boosting
and density estimation, in which we have noted that the multiplicative estimator
introduced by [7] can be described as a boosting algorithm, for more details see
Sect. 3.5.1. The second one concerns L2-boosting applied to regression, whereas
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Fig. 3.12 Log mean squared error from a standard Normal CDF based on 100 simulations of
sample size n D 1;000 using an empirical CDF, a smoothed CDF, and boosted iterations of a
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the basic strategy of iterative adding of smooth of residuals has been proposed as
late as 1977 by [13], in his classical book Exploratory Data Analysis; for more
details, see Sect. 3.5.3.

References

1. R. E. Schapire, “The strength of weak learnability,” Machine Learning, vol. 5, pp. 197–227,
1990.

2. Y. Freund, “Boosting a weak learning algorithm by majority,” Information and Computa-
tion/information and Control, vol. 121, pp. 256–285, 1995.

3. M. D. Marzio and C. C. Taylor, “Using small bias nonparametric density estimators for con-
fidence interval estimation using small bias nonparametric density estimators for confidence
interval estimation,” Journal of Nonparametric Statistics, vol. 21, pp. 229–240, 2009.

4. P. Buhlmann and T. Hothorn, “Boosting Algorithms: Regularization, Prediction and Model
Fitting,” Statistical Science, vol. 22, no. 4, pp. 477–505, 2007.

5. Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and
an application to boosting,” in European Conference on Computational Learning Theory,
pp. 23–37, 1995.

6. R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptative mixture of local
experts,” Neural Computation, vol. 3, pp. 1–12, 1991.



3 Boosting Kernel Estimators 115

7. M. C. Jones, O. Linton, and J. P. Nielsen, “A simple bias reduction method for density
estimation,” Biometrika, vol. 82, pp. 327–338, 1995.

8. M. D. Marzio and C. C. Taylor, “Kernel density classification and boosting: an l2 analysis,”
Statistics and Computing, vol. 15, pp. 113–123, 2005.

9. M. D. Marzio and C. C. Taylor, “On boosting kernel density methods for multivariate
data: density estimation and classification,” Statistical Methods and Applications, vol. 14,
pp. 163–178, 2005.

10. M. D. Marzio and C. C. Taylor, “Boosting kernel density estimates: A bias reduction
technique?,” Biometrika, vol. 91, pp. 226–233, 2004.

11. J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view
of boosting (with discussion and a rejoinder by the authors),” Annals of Statistics, vol. 28,
pp. 337–407, 2000.

12. I. S. Abramson, “On Bandwidth Variation in Kernel Estimates-A Square Root Law,” The
Annals of Statistics, vol. 4, pp. 1217–1223, 1982.

13. J. W. Tukey, Exploratory Data Analysis. Addison-Wesley, Philippines, 1977.
14. M. D. Marzio and C. C. Taylor, “On boosting kernel regression,” Journal of Statistical Planning

and Inference, vol. 138, pp. 2483–2498, 2008.
15. J. A. Rice, “Boundary modifications for kernel regreession,” Comm. Statist. Theory Meth.,

vol. 13, pp. 893–900, 1984.
16. M. C. Jones, “Simple boundary correction for kernel density estimation,” Statistics and

Computing, vol. 3, pp. 135–146, 1993.
17. T. Gasser, H.-G. Müller, and V. Mammitzsch, “Kernels for nonparametric curve estimation,”

Journal Royal Statist. Soc. B, vol. 47, pp. 238–252, 1985.



Chapter 4
Targeted Learning

Mark J. van der Laan and Maya L. Petersen

4.1 Introduction

Suppose we observe n i.i.d. copies O1; : : : ; On of a random variable O with
probability distribution P0, and assume that it is known that P0 2 M for some
set of probability distributions M . One refers to M as the statistical model for
P0. We consider so called semiparametric models that cannot be parameterized by
a finite dimensional Euclidean vector. In addition, suppose that our target parameter
of interest is a parameter � W M ! F D f�.P / W P 2 M g, so that  0 D �.P0/

denotes the parameter value of interest. We wish to estimate  0 based on the
datasetO1; : : : ; On. In the first part of this article, we consider the case that � is not
pathwise differentiable; in the typical applications �.P0/ is itself a whole function,
so that  0 is an infinite dimensional parameter. For example, �.P0/ D P0 itself,
or some conditional density or conditional mean identified by P0. Let MNP be the
nonparametric model that also includes the realizations of the empirical probability
distribution Pn of O1; : : : ; On. An estimator O� W MNP ! F will be viewed as
a mapping from the empirical distribution Pn of O1; : : : ; On into the parameter
space F . In this chapter, we discuss estimator selection for the target parameter
�.P0/. We use this terminology over “model selection”, since the formal meaning
of a (statistical) model in the field of statistics is the set of possible probability
distributions, and most algorithms are not indexed by a statistical model choice.

An example is provided by O D .W;A; Y /, where W denotes baseline covari-
ates, A a subsequent dose of a drug, Y a final outcome, M a nonparametric model,
and where �.P /.a/ D EPEP .Y j A D a;W / maps a probability distribution P
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into a function of dose level a. If one wishes to make the additional nontestable
causal assumptions that there exists an underlying collection of counterfactual ran-
dom variables Y.a/ so that Y D Y.A/, and thatA is independent of .W; .Y.a/ W a//,
givenW (i.e., thatW is sufficient to control for confounding of the effect ofA on Y ),
we have that �.P /.a/ D EY.a/. Thus under these additional causal assumptions,
�.P / can be interpreted as a causal dose–response curve summarizing the causal
effect of setting the drug dose at level a on outcome Y .

Due to the dimension of the model M , the maximum likelihood estimator is
often ill behaved or not defined. As a consequence, a careful trade-off of bias
and variance is required to make a choice between a large class of candidate
estimators, and thereby construct sensible well-behaved estimators of 0. We define
an appropriate risk function R. ;P0/ of a candidate value  that is minimized at
 0, and whose risk-based dissimilarity R. ;P0/ � R. 0; P0/ measures a desired
dissimilarity between a candidate  and truth  0. If the risk function is linear, then
R. ;P0/ D EP0L. /.O/ for some loss function . ;O/ ! L. /.O/. Given an

estimator O� , an estimate of the conditional risk R
� O�.Pn/; P0

�
can then be used as

a criterion to select among candidate estimators of  0.
In the first part of this chapter, we propose a template for construction of an

estimator of 0 that is defined by (1) a library of initial estimators, which themselves
may be data adaptive algorithms; (2) a parametric family of weighted combinations
of these estimators that provides the set of candidate estimators; and, (3) a risk
function. A cross-validated estimated risk is computed for each of the candidate
estimators and the cross-validation selector selects the optimal candidate estimator
by minimizing the cross-validated estimated risk over all candidate estimators in
the set. We refer to this template as super learning, and to the resulting estimator
as a super learner. We then consider the case that the risk function is defined by a
loss function indexed by a relatively easy to estimate nuisance parameter (relative
to  0). In this case, the risk can be estimated with an empirical mean of the loss
using a simple plug-in estimator for the nuisance parameter. We present a finite
sample oracle inequality that demonstrates the asymptotic optimality of the super
learner under this scenario. Specifically, if none of the candidate estimators behave
as an estimator based on a correctly specified parametric model (i.e., converge
to  0 at rate 1=

p
n), then our finite sample inequality for the cross-validation

selector implies that the super learner asymptotically outperforms all the candidate
algorithms in the library as long as the number of candidate algorithms converges
to infinity at a rate that is polynomial in sample size.

In the second part of this chapter, we consider the case that � is a pathwise
differentiable parameter at P 2 M with canonical gradient D�.P /, for each P 2
M . That is, for a rich collection of one-dimensional parametric submodels fP."/ W
"g we have that d

d"�.P."//
ˇ̌
"D0 D EPD

�.P /.O/S.O/, where S is the score
of the one-dimensional parametric model, and the components of D�.P / are an
element of the closure of the linear span of all the scores generated by this family of
one-dimensional models. Due to this pathwise differentiability, the target parameter
�.P / is a smooth enough function of P so that one can construct an asymptotically
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linear estimator of  0 under some regularity conditions. An estimator O�.Pn/ is
asymptotically linear at P0 if

O�.Pn/ �  0 D .Pn � P0/IC.P0/C oP
�
1=

p
n
�
:

Here, we used the notation Pf D R
f .o/dP.o/. The function IC.P0/ is called the

influence curve of the estimator at P0. If O� is asymptotically linear, then (by the

CLT)
p
n
� O�.Pn/ �  0

�
converges to a multivariate normal distribution with mean

zero and covariance matrix ˙0 D P0IC.P0/IC.P0/>. Statistical inference in terms
of confidence intervals and tests can now be based on an estimator ˙n of ˙0.

When the target parameter � is pathwise differentiable, it is often not possible
to construct an appropriate risk function that directly targets  0 such that the super
learner achieves its desirable optimality properties. In particular, the finite sample
inequality established for the cross-validation selector is now not of as much interest
since the rate of convergence of different candidate estimators is now 1=

p
n. In this

case one can still use super learning to obtain an estimator Qn of a nonpathwise
differentiable parameter Q0 for which  0 D �.Q0/. However, one now needs
to carry out a subsequent targeting step that removes residual bias (and possibly
variance) w.r.t. the lower-dimensional 0 to correct for the fact that the super learner
was targeting Q0, and not directly targeting  0. The update of the estimator of Q0

to directly target  0 results in a substitution estimator �.Q�
n/, where Q�

n is the
targeted estimate of Q0. We review this template for targeted learning of pathwise
differentiable parameters, which we refer to as Targeted Minimum Loss Based
Estimation (TMLE) [84].

Finally, with TMLE in our toolbox, we return to the case that our target
parameter is nonpathwise differentiable, but now consider general risk functions, not
necessarily expressed as an expectation of a loss function. We note that estimation
of the risk as the empirical mean of a plug-in estimator of the loss function does
not necessarily satisfy the constraints implied by the model and the definition of
risk, such as that the risk is positive valued and bounded from above. We present
an alternative approach to estimation of the risk function at a candidate estimator
that instead makes use of a cross-validated targeted maximum likelihood estimator.
This provides a generalized approach to super learning that utilizes TMLE for the
purpose of estimation of the risk function.

4.1.1 Organization

In Sect. 4.2 we present the template for super learning of a nonpathwise dif-
ferentiable (infinite dimensional) parameter in terms of a risk function, library
of estimators, parametric family for generating weighted combinations of these
estimators, and cross-validation as a tool for estimator selection. The risk function
is assumed to be either linear in the probability distribution of the data, or linear
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in the probability distribution of the data up to a dependence on a relatively
easy to estimate nuisance parameter. Section 4.3 presents an oracle inequality
of the cross-validation estimator selector for risk functions that are linear in the
probability distribution of the data, possibly up to a relatively easy to estimate
nuisance parameter. These oracle inequalities imply the asymptotic optimality of
the cross-validation estimator selector and thereby the super learner whenever
none of the candidate estimators converges at the rate 1=

p
n; if, by luck (e.g., by

guessing a correctly specified parametric model), one of the estimators achieves
this rate of convergence, then the estimator selected by the cross-validation selector
will also converge at this rate. In Sect. 4.4 we demonstrate the super learner
in a number of examples. In Sect. 4.5, we consider estimation of a pathwise
differentiable parameter. For that purpose, we augment the super learning template
with an additional targeted loss-based estimation update, resulting in a template
for targeted minimum loss-based estimation (TMLE). In Sect. 4.6, we demonstrate
TMLE using variable importance analysis as an example. Finally, in Sect. 4.7 we
return to the problem of estimation of a nonpathwise differentiable parameter for
general risk functions, now addressing risk functions for which simple plug in
estimators of the risk might be inappropriate and result in a super learner with
poor performance. We assume that the risk function at a candidate parameter value
is pathwise differentiable. We propose the application of a cross-validated-TMLE
(CV-TMLE) to estimate the risk function at a candidate parameter value. This
provides a general super learner of a nonpathwise differentiable parameter. We
demonstrate this general super learning template using the estimation of the causal
dose–response curve for a continuous valued exposure/dose as an example. Section
4.8 provides some summary remarks. This chapter represents an overview of pre-
viously established results on unified loss-based cross-validation for nonpathwise
differentiable parameters, and targeted minimum loss-based estimation of pathwise
differentiable parameters (e.g., [81,84]), as well as presents new methods for general
risk functions. The work presented builds on an extensive literature on data-adaptive
estimation, ensemble learning, semiparametric estimation, and efficiency theory.
Rather than providing exhaustive citations in the main text, we conclude in Sect.
4.9 with bibliographic remarks that provide an overview of some of the relevant
literature.

4.2 Targeted Super Learning

In this section we define the super learning algorithm in terms of a risk function,
library of estimators, and family of weighted combinations of these estimators.
A cross-validated estimator of risk is computed for each candidate estimator, and
the optimal weighted combination, defined as the minimizer of the cross-validated
estimated risk, is selected as the final estimator.
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4.2.1 Loss and Risk Functions

Let O � P0 2 M . Define a parameter � W M ! F � f�.P / W P 2 M g in terms
of a risk functionR as follows:

�.P / D arg min
 2F

R. ;P /:

Thus,  0 D �.P0/ D arg min R. ;P0/ represents the true parameter value. We
wish to estimate  0 based on n i.i.d. copiesO1; : : : ; On ofO � P0. This estimation
problem is defined by the statistical model M and the parameter mapping � W
M ! F .

In typical applications,  0 will be a high dimensional function such as a
conditional density, conditional mean, or classifier. If R. ;P / D PL. / �R
L. /.o/dP.o/ for some function L, then we refer to R as a linear risk function,

and .O; / ! L. /.O/ is a loss function that assigns a loss to a candidate  and
observationO .

If R depends on P in a nonsmooth manner, then we aim to determine a
representation R. ;P / D R� .P/. ; P /, where P ! R�. ;P / is smooth (e.g,
linear) in P , and � W M ! F� is a nuisance parameter. It is common that
R� .P/. ; P / D PL� .P/. / for a loss function L that is now also indexed by a
nuisance parameter � W M ! F� . That is, the loss function L for  0 is now
unknown, and is itself a parameter of P0 through �0. In this case, for a given
value � of the nuisance parameter, the risk function is linear in P . Such risk
functions defined by generalized loss functions .O; ; �/ ! L�. /.O/ indexed
by a nuisance parameter � represent an important class of nonlinear risk functions.

If �0 is a relatively easy to estimate nuisance parameter and � ! L� is
reasonably smooth, then one may be willing to assume that the estimated loss L�n
would perform as well as L�0 for the purpose of estimation of  0. The underlying
assumption in such a case is that estimation of L�0. / as a function of �0 is an
easier estimation problem than estimation of  0. Such an assumption might be
warranted, for example, if one has particular knowledge about �0 such that one
can confidently obtain good well-behaved estimators of �0. For risk functions of
the two types mentioned above (increasing in generality, linear, or linear for fixed
nuisance parameter), one expects the empirical riskR�n. ; Pn/ (for good estimators
of the nuisance parameter) to behave as an empirical mean, so that empirical process
inequalities can be utilized to prove important results of interest about the cross-
validation selector defined below.

4.2.2 Library of Algorithms

Let O�j W MNP ! F be a j -specific estimator of  0, where MNP denotes a
nonparametric model so that it includes the empirical probability distribution Pn
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of a sample O1; : : : ; On with probability 1, j D 1; : : : ; J . One particular type
of estimator is defined as the minimizer of the empirical risk R. ;Pn/ over a
j -specific parametric or semiparametric subspace Fj � F , such as one implied
by a submodel Mj of M . Other estimators are obtained using sieve (sequence
of subspaces approximating F )-based estimation based on this risk function and
an algorithm for minimizing the empirical risk function over these subspaces,
using internal fine-tuning of a variety of fine-tuning parameters. Some estimators
involve resampling or ensemble learning, thereby combining algorithms into a new
algorithm: for example, in prediction, bagging involves bootstrapping, computing an
estimator on each bootstrap sample, and averaging the bootstrap-specific estimators.

A library of estimators can be further expanded by mapping an initial algorithm
in the library into a number of new algorithms. For example, an initial algorithm
can be indexed by a set of different prior dimension reductions, or can be stratified
on a discrete variable. In this manner, a rich library of diverse algorithms can
be constructed, including state of the art algorithms in machine learning as well
as classical parametric model-based estimators. Each algorithm O�j results in an
estimate O�j .Pn/ when applied to a dataset O1; : : : ; On.

4.2.3 Family for Combining Algorithms

Given the library of algorithms O�j , j D 1; : : : ; J , we consider a family of

algorithms O�˛ D f
�� O�j W j

�
; ˛
�

indexed by a Euclidean vector ˛ for some

function f . For example,

O�˛ D
JX
jD1

˛.j / O�j :

If  0 is known to be a function with values in Œ0; 1�, then one might use the family
defined by

log
O�˛

1 � O�˛
D

JX
jD1

˛.j / log
O�j

1 � O�j
:

One could also consider parametric families that combine cross-product terms
O�j1 O�j2 for pairs j1; j2 beyond the main algorithms. The vector ˛ may be constrained

in a user-supplied way, such as ˛.j / � 0 and
P

j ˛.j / D 1.

4.2.4 Cross-Validated Estimator of Risk of Candidate
Estimator

Let Bn 2 f0; 1gn be a random variable defining a split of fO1; : : : ; Ong into a
training sample fOi W Bn.i/ D 0g and validation sample fOi W Bn.i/ D 1g
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with corresponding empirical probability distributionsP0
n;Bn

andP1
n;Bn

, respectively.

Let O� W MNP ! F� be an estimator of the nuisance parameter in the risk function
(if there is such a nuisance parameter). The cross-validated estimator of risk of a
candidate estimator O� W MNP ! F is defined as

EBnR O� .P0n;Bn/
� O� �P0

n;Bn

�
; P 1

n;Bn

�
:

For linear risk functions defined by loss function L this reduces to

EBnP
1
n;Bn

L
� O� �P0

n;Bn

��
:

For loss functions indexed by a nuisance parameter, this reduces to

EBnP
1
n;Bn

L O� .P0n;Bn/
� O� �P0

n;Bn

��
:

The cross-validated estimator of risk of the estimator O� represents a measure
of performance. Specifically, the cross-validated estimator or risk targets the
conditional risk EBnP0L�0. O�.P 0

n;Bn
// of the estimator when applied to samples of

size n.1 � p/, where p D P
i Bn.i/=n is the proportion of observations that fall

into the validation sample.

4.2.5 Super Learning Algorithm

The class of candidate estimators is given by O�˛ W MNP ! F indexed by a
Euclidean parameter ˛. The cross-validation selector of ˛ is defined as

˛n D arg min
˛
EBnR O� .P0n;Bn/

� O�˛
�
P0
n;Bn

�
; P 1

n;Bn

�
:

The super learner of  0 is defined by

O�SL.Pn/ D O�˛n.Pn/:

4.2.6 Evaluation of Performance of Super Learner

The performance of the Super Learner O�SL itself can be assessed with its cross-
validated estimator of risk:

EBnR O� .P0n;Bn/
� O�SL

�
P0
n;Bn

�
; P 1

n;Bn

�
:
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4.3 Oracle Inequality for Cross-Validation Selector

We present a finite sample oracle inequality for the cross-validation selector for the
linear risk function. We focus on loss functions that imply a quadratic dissimilarity
and refer to [81] and subsequent articles for the analogue results for loss functions
that are nonquadratic. We also present a generalized oracle inequality for loss
functions that are indexed by a nuisance parameter. We conclude with a corollary
representing the implication of this oracle inequality for the super learner.

4.3.1 Oracle Inequality for Linear Risk Function

We now present the oracle inequality for this cross-validation selector ˛n, as
presented originally in [81]. Let d. ; 0/ D P0fL. / � L. 0/g denote the
loss-function-based dissimilarity. Assume that the loss function is bounded:
M1 � sup ;O j L. /.O/ � L. 0/.O/ j< 1. In addition, we assume that

P0 fL. / � L. 0/g2 � M2P0fL. / � L. 0/g. As explained in [81], the latter
assumption corresponds with the loss-based dissimilarity being quadratic in the
difference between  and  0. These two properties of the loss function allow us
to apply the oracle inequality for the cross-validation selector as presented in [81]:
if the cross-validation selector ˛n is defined as a minimizer over a grid with K.n/
˛-values, then for any ı > 0,

Ed
� O�˛n

�
P0
n;Bn

�
;  0

�
� .1C 2ı/Emin

˛
EBnd

� O�˛
�
P0
n;Bn

�
;  0

�

CC.M1;M2; ı/
logK.n/

n
;

where C.M1;M2; ı/ is a specified constant. The Q̨n that attains the minimum on the
right-hand side is referred to as the oracle selector. Thus, the oracle selector selects
the ˛ that minimizes the dissimilarity with  0 for the given sample Pn. By choosing
a grid with width 1=n, we obtain a grid that is more than fine enough so that no
precision is lost. In that case, the logK.n/ is bounded by a constant times logn.

This oracle inequality has been applied to log-likelihood loss L. / D � log in
the case that 0 is a conditional density and squared error lossL. / D .Y� .W //2

in the case that  0 D E0.Y j W / [81], among others.

4.3.2 Oracle Inequality for Loss Function Indexed
by Nuisance Parameter

Throughout the following theorem we introduce and use the following notation:

L� � O�k
�
P0
n;Bn

�
;  0

�
� L�0

� O�k
�
P0
n;Bn

�� � L�0. 0/
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L�0
n;Bn

� O�k
�
P0
n;Bn

�
;  0

�
� L O� .P0n;Bn/

� O�k
�
P0
n;Bn

��� L O� .P0n;Bn/. 0/
�
L�0
n;Bn

�L�� � O�k
�
P0
n;Bn

�
;  0

�
D L�0

n;Bn

� O�k
�
P0
n;Bn

�
;  0

�
�L�

� O�k
�
P0
n;Bn

�
;  0

�
:

We also note that the rates r1.n/; r2.n/ as defined in the theorem are determined by
the rate at which the nuisance parameter estimate O� .Pn/ approximates �0.

Theorem 1. Let O�k.Pn/, kD 1; : : : ; K.n/, be a set of given estimators of  0 D
argmin 2F

R
L�0.O; /dP0.O/. Suppose that O�k.Pn/ 2 F for all k, with

probability 1. Let kn D argminkEBn
R
L O� .P0n;Bn /.

O�k.P 0
n;Bn

//dP1
n;Bn

be the cross-

validation selector, and let Qkn.1�p/ D argminkEBn
R
L�0.

O�k.P 0
n;Bn

//dP0 be the
comparable benchmark selector.

Assumption 1 A1. The limit �0 of the estimator �n D O� .Pn/ for n ! 1 is an
element of � .P0/ � f� W  0 D arg min P0L� . /g.

A2. There exists a M �
1 < 1 so that

sup
 2F

sup
O

L�. ; 0/.O/ � M �
1 ;

where the supremum over O is taken over a support of the distribution P0 of O .

A3. There exists a M2 < 1 so that for all  2 F

VARP0
�
L�. ; 0/

� � M2EP0L
�. ; 0/: (4.1)

Definition 1. We define the following constants:

M1 D 2M �
1

c.M1;M2; ı/ D 2.1C ı/2
�
M1

3
C M2

ı

	

a0 � 2M1=3

M3.n/ D 3a0C
p
2

p
log.2/

log.K.n//
C

p
2p

log.K.n//
C b0 C

Z 1

b0

2K.n/1�m.x/dx;

where b0 is the smallest constant larger than the solution of 1 � m.x/ D 0 with
m.x/ � 0:5 x2

1= log.K.n//Ca0x . We note thatM3.n/ # in n. We also define the following
sequences in n:

r1.n/ � max
Nk2fkn; Qkn.1�p/g

E
R �
L�0
n;Bn

� L�� � O� Nk
�
P0
n;Bn

�
;  0

�
dP0

r
E
R
L�
� O� Nk

�
P0
n;Bn

�
;  0

�
dP0
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r2.n/ � E max
k2f1;:::;K.n/g

sZ �
L�0
n;Bn

� L��2 � O�k
�
P0
n;Bn

�
;  0

�
dP0

Qr.n/ �
r
E d

� O� Qkn.1�p/
�
P0
n;Bn

�
;  0

�
:

Finally, for any ı > 0 we define

"n.ı/ � .1C 2ı/Qr2.n/C 2c.M1;M2; ı/
1C log.K.n//

np
C .1C ı/r1.n/Qr.n/

C2M3.1C ı/ log.K.n//

.np/0:5
max.r2.n/; .np/�0:5I.r2.n/ > 0//:

Finite Sample Result

For any ı > 0, we have
r
E d

� O�kn
�
P0
n;Bn

�
;  0

�
� r1.n/.1C ı/Cp

r1.n/2.1C ı/2 C 4"n.ı/

2
: (4.2)

In the special case that �0 is known so that r1.n/ D r2.n/ D 0, we have that the
finite sample result (4.2) reduces to

E d
� O�kn

�
P0
n;Bn

�
;  0

�
D .1C 2ı/E d

� O� Qkn.1�p/
�
P0
n;Bn

�
;  0

�

C 2c.M1;M2; ı/
1C log.K.n//

np
:

Asymptotic Implication

For any ı > 0

E d
� O�kn

�
P0
n;Bn

�
;  0

�
� .1C 2ı/E d

� O� Qkn.1�p/
�
P0
n;Bn

�
;  0

�
CO.H.n//;

where

H.n/ � max

 
log.K.n//

np
;

log.K.n//r2.n/

.np/0:5
; r21 .n/; r1.n/Qr.n/; r1.n/1:5 Qr.n/0:5;

p
log.K.n//r1.n/

.np/0:5
;

p
log.K.n/r2.n/0:5r1.n/

.np/0:25

!
:

Consequently, we have the following scenarios.



4 Targeted Learning 127

Optimal Rate

If max
�

log.K.n//
np

; r1.n/
2; log.K.n//r2.n/2

�
D O.Qr.n/2/, then H.n/ D O.Qr.n/2/,

and thus E d. O�kn.P 0
n;Bn

/;  0/ D O.Qr.n/2/. If either max
�

log.K.n//
np

; r1.n/
2;

log.K.n//r2.n/2
�

D o.Qr.n/2/ or max
�

log.K.n//2

np
; r1.n/

2; r2.n/
2
�

D o.Qr.n/2/,
then

H.n/ D o
�Qr.n/2� :

In particular, we note that if max.r1.n/2; log.K.n//r2.n/2/ D o.Qr.n/2/, then

H.n/ D O

�
log.K.n//

np

	
C o

�Qr2.n/� :

Asymptotic Optimality

Consequently, under these two possible scenarios under which H.n/ D o
�Qr.n/2�,

we have

E d
� O�kn

�
P0
n;Bn

�
;  0

�

E d
� O� Qkn.1�p/

�
P0
n;Bn

�
;  0

� ! 1 for n ! 1. (4.3)

Finally, if these two possible scenarios hold with Qr.n/2 replaced by the random

quantity EBnd
� O� Qkn.1�p/

�
P0
n;Bn

�
;  0

�
, then

EBnd
� O�kn

�
P0
n;Bn

�
;  0

�

EBnd
� O� Qkn.1�p/

�
P0
n;Bn

�
;  0

� ! 1 in probability for n ! 1. (4.4)

The final convergence in probability statement is a straightforward consequence
of our finite sample inequality and the following Lemma 1.

Lemma 1. Consider a sequence of random variables Z1;Z2; : : : , with finite
expectationEjZnj D O.g.n//, for a positive function g.n/. Then Zn D OP .g.n//.

This lemma is a direct consequence of Markov’s inequality. The proof of this
theorem is presented in [81].
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4.3.3 Asymptotic Equivalence of Cross-Validation Selector
with Oracle Procedure

Theorem 1 provides a finite sample bound for the expected value of the loss-based

dissimilarity EBnd
� O�kn

�
P0
n;Bn

�
; P0

�
of the cross-validated selected estimator,

and the loss based dissimilarity EBnd
� O� Qkn.1�p/

�
P0
n;Bn

�
; P0

�
of the oracle-selected

estimator. This allows us to compare the performance of the cross-validated selector
kn to the benchmark Qkn.1�p/ in terms of the conditional (true) risks based on n.1�p/
training observations. Specifically, the finite sample bound provided by Theorem 1
implies that the two loss-based dissimilarities are asymptotically equivalent as long
as the loss-based dissimilarity for the oracle-selected estimator does not converge
as fast to zero as 1=

p
n or as fast as the rate at which the nuisance parameter is

estimated (i.e. r1.n/ and r2.n/).
However, one would like the cross-validated selector kn to perform as well as the

benchmark selector Qkn based on the whole sample of size n, defined as

Qkn D arg min
k
d
� O�k.Pn/;  0

�
;

rather than only n.1 � p/ as above. The following is an immediate corollary of
Theorem 1 that addresses this wished optimality. In this corollary, we use the
notation p D pn to emphasize the dependence of the validation set proportion
p on n. The corollary proves that, if p D pn converges slowly enough to zero
when the sample size n converges to infinity, then, given the mild condition (4.6)
given below, the desired asymptotic optimality of the cross-validation selector kn
follows. The proof of this corollary is straightforward and provided in [81] (and
also in subsequent articles).

Corollary 1. If p D pn ! 0, the conditions of Theorem 1 hold so that for n ! 1

E d
� O�kn

�
P0
n;Bn

�
;  0

�

E d
� O� Qkn.1�pn/

�
P0
n;Bn

�
;  0

� ! 1 as n ! 1,

and for n ! 1

E d
� O� Qkn.Pn/;  0

�

E d
� O� Qkn.1�pn/

�
P0
n;Bn

�
;  0

� ! 1 as n ! 1, (4.5)

then

0
@E d

� O�kn
�
P0
n;Bn

�
;  0

�

E d
� O� Qkn.Pn/;  0

�
1
A ! 1 as n ! 1: (4.6)
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Consider the estimator O�.Pn/ � O�kn.Pn/. Suppose that for n large enough

ER
� O� �P0

n;Bn

�
; P0

�
� ER

� O�.Pn/; P0
�
;

then (4.6) implies the wished asymptotic equivalence result:

E d
� O�kn.Pn/;  0

�

E d
� O� Qkn.Pn/;  0

� ! 1:

In other words, if the estimator O�.Pn/ is capable of learning, then (4.6) implies the
wished optimality result. We also note that the condition (4.5) is not more than a
very weak regularity condition.

4.4 Examples: Super Learning

In this section, we present a number of examples in which the super learner method
can be applied. We provide examples of both linear risk functions and nonlinear
risk functions defined by loss functions indexed by a nuisance parameter, noting,
as above, that the optimal properties of the super learner in the latter case will
depend on the extent to which a good estimator of the nuisance parameter can
be obtained. Specifically, for a range of data and target parameters we present an
appropriate loss and corresponding risk function and the resulting cross-validation
selector. User-supplied input in the form of a library of algorithms and parametric
family of weighted combinations of these algorithms results in a set of candidate
estimators indexed by ˛. The corresponding super learner is defined as the cross-
validation selector applied to this set of candidates.

The examples presented are by no means exhaustive. As originally highlighted
in [81], this template of cross-validation methodology and super learning covers,
in particular, the generalization of a cross-validation selection method based on
observing a particular full data structure X to any censored data structure O D
˚.C;X/ for a known many to one-mapping˚ and censoring variable C .

4.4.1 Prediction

We observe n i.i.d. observations of O D .Y;W / � P0, where Y is an outcome and
W is a vector of covariates. Let  0.W / D E0.Y j W / be the parameter of interest.
If we define

L. /.O/ D .Y �  .W //2
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Table 4.1 Library of
prediction algorithms for the
corresponding R package

Algorithm Description Author

glm Linear model [55]
interaction Polynomial linear model [55]
randomForest Random Forest [13, 46]
bagging Bootstrap aggregation of trees [11, 52]
gam Generalized additive models [38, 39]
gbm Gradient boosting [29, 56]
nnet Neural network [92]
polymars Polynomial spline regression [28, 44]
bart Bayesian additive regression trees [20, 21]
loess Local polynomial regression [22]
bayesglm Bayesian linear model [33, 34]
glmnet Elastic net [30, 31]
DSA DSA algorithm [50, 72]
step Stepwise regression [92]
ridge Ridge regression [92]
svm Support vector machine [19, 25]

as the squared error loss function, then 0 D argmin E0L. /.O/. Given candidate

estimators  ˛;n D O�˛.Pn/, the loss-based dissimilarity is given by

d. ˛;n;  0/ D
Z
. ˛;n.w/ �  0.w//2 dP0.w/:

The cross-validation selector is given by:

˛n D argmin˛EBn
X

i WBn.i/D1

�
Yi � O�˛

�
P0
n;Bn

�
.Wi /

�2
:

4.4.1.1 Practical Demonstration of Super Learning in Prediction

This section is based on a previously published study as presented in Chap. 3 in [84].
To study the super learner in real data examples, [54] collected a set of publicly
available datasets. The sample sizes ranged from 200 to 654 observations and
the number of covariates ranged from 3 to 18. All 13 datasets have a continuous
outcome and no missing values. The datasets can be found either in public
repositories like the UCI data repository or in textbooks, with the corresponding
citations listed in the above reference.

Above, we defined the risk function and corresponding cross-validation selector.
The super learner template further requires definition of the library of initial
algorithms and of the parametric family of weighted combinations of these algo-
rithms. In Table 4.1, we list the algorithms that were included in the library. These
algorithms represent a diverse set of basis functions and should allow the super
learner to work well in most real settings. For the comparison across all datasets,
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we kept the library of algorithms the same. When applying the super learner to a
specific application, the library can be expanded or modified to include algorithms
based on contextual knowledge of the data problem. Our parametric family of
algorithms was defined as all convex combinations of the algorithms included in
the library. In other words, we used:

O�˛ D
JX
jD1

˛.j / O�j ;

where ˛.j / � 0 and
P

j ˛.j / D 1.
In order to compare the performance of the prediction algorithms across diverse

datasets across which the outcome scale differed, we used the mean squared error
relative to the mean squared error of a linear model:

relMSE.j / D MSE.j /

MSE.lm/
; j D 1; : : : ; J; (4.7)

for each of the J D 16 algorithms in the library. We compared these to the relative
MSE for the super learner, as well as for the cross-validation selector applied to the
initial J algorithms (rather than all convex combinations of these algorithms). We
refer to the latter estimator as the “discrete super learner.”

The results for the super learner, the discrete super learner, and each individual
algorithm can be found in Fig. 4.1. Each point represents the ten-fold cross-validated
relative mean squared error for a single dataset and the plus sign represents the
geometric mean across all 13 datasets. The super learner slightly outperforms
the discrete super learner, and both outperform any individual algorithm in the
library. Among the individual library algorithms the bayesian additive regression
trees performs the best, but overfits on one of the datasets with a relative mean
squared error of almost 3.0, demonstrating the dangers of reliance on a single
algorithm. Further, in many real data applications it is unlikely that one single
algorithm contains the true relationship between predictors and outcome. These
results demonstrate how the super learner is able to adapt to the true underlying
structure across various real data examples. The additional estimation of the
combination parameters (˛) does not appear to cause an overfit in terms of the risk
assessment.

4.4.2 Density Estimation

We observe n i.i.d. observations on O � f0 � dP0
d� , where � is a dominating

measure of the data-generating distribution P0. Let the parameter of interest  0 D
f0 be the density itself. If we define as loss function the negative log likelihood,

L. / D � log .O/;
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Fig. 4.1 Ten-fold cross-validated relative mean squared error compared to glm across 13 real
datasets. Sorted by the geometric mean, denoted with the plus (C) sign

then f0 D argmin E0L. /.O/. Given candidate density estimators  ˛;n D O�˛.Pn/
of  0 D f0, the loss-based dissimilarity is given by

d. ˛;n;  0/ D
Z

log

�
 ˛;n.o/

 0.o/

	
 0.o/d�.o/;

that is, d. ˛;n;  0/ is the Kullback–Leibler divergence between  ˛;n and  0. The
cross-validation selector is given by

˛n D OK.Pn/
D argmin˛EBn

X
i WBn.i/D1

� log
� O�˛

�
P0
n;Bn

�
.Oi /

�
:
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4.4.3 Multivariate Prediction

Multivariate prediction provides an example of the case of a nonpathwise differen-
tiable parameter indexed by a nuisance parameter. LetO D .Y D .Y.1/; : : : ; Y.l//;

W / � P0, where Y is a multivariate random outcome vector and W a vector of
covariates. Let  0.W / � E0.Y j W / D .E0.Y.1/ j W /; : : : ; E0.Y.l/ j W // be
the multivariate conditional expectation of Y , givenW . For a candidate multivariate
predictor  .W /, we define

L�0. / � .Y �  .W //>�0.W /.Y �  .W //;

where �0 is a symmetric l � l-matrix function of W . If �0 is a user-supplied known
matrix, then it is not a nuisance parameter and we can denote the loss function with
L. /. However, �0 can also denote the desired limit of an estimator of an unknown
matrix such as

�
E0
�fY �E0.Y j W /g fY � E0.Y jW /g> j W ���1

:

In this case, �0 denotes a nuisance parameter which needs to be estimated from the
data. For any symmetric matrix function �.W /, we have

 0 D argmin E0L�. /: (4.8)

Given candidate estimators  ˛;n D O�˛.Pn/ of  0 indexed by ˛, and an estimator
O� .Pn/ (e.g., an estimate of the inverse of the conditional covariance matrix

according to a working model such as the independence working model) of �0, the
cross-validation selector ˛n is given by:

˛n D argmin˛EBn

Z
L O� .P0n;Bn/

� O�˛
�
P0
n;Bn

��
dP1

n;Bn
.O/

D argmin˛EBn
1

np

nX
iD1

n
I.Bn.i/ D 1/

.Y.i/ � O�˛
�
P0
n;Bn

�
.Wi//

> O� �P0
n;Bn

�
.Wi/.Y.i/ � O�˛

�
P0
n;Bn

�
.Wi //

o
:

We note that

�
Y � O�˛

�
P0
n;Bn

�
.W /

�>
�0.W /

�
Y � O�˛

�
P0
n;Bn

��
.W //

D



�0:50 .W /

�
Y � O�˛

�
P0
n;Bn

�
.W /

�



2

;
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where k x kD
qPl

jD1 x2j is the Euclidean norm in IRl , and �0:50 is the square root
of �0. This shows that

d. ˛;n;  0/ D
Z 

�0:50 . ˛;n.W /�  0.W //



2 dP0.W /:

Application of our general Theorem 1 to this example results in a finite sample result
and asymptotic optimality of the cross-validation selector.

4.4.4 Prediction of Survival with Right Censoring

Prediction of survival given a vector of baseline covariates in the presence of right
censoring provides a second example of a nonpathwise differentiable parameter
indexed by a nuisance parameter. Let X.t/, t � 0, be a time-dependent process,
which includes as component R.t/ D I.T � t/, where T is a survival time.
Let X D NX.T / � fX.t/ W t � T g be the full-data structure of interest. Let
W D X.0/ denote the baseline covariates measured at baseline. The distribution
ofX will be denoted with FX0. Let C be a right-censoring time so that the observed
data structure is given by

O D � QT � min.T; C /
�
; � � I

� QT D T
�
; NX � QT � :

We will assume that the conditional distribution G0.	jX/ of C , given X , satisfies
coarsening at random (CAR, see [83]), that is, for t < T ,

�C .t j X/ D m
�
t; NX.t/� for some measurable functionm;

where �C .t j X/ denotes the discrete or continuous conditional hazard of C ,
given X . If X D .T;W / does not include time-dependent covariates, then CAR is
equivalent with assuming that C is conditionally independent of T , givenW . Under
CAR, the density of P0 factors into a FX0-part and G0-part [35]. The FX0-part of
the density will be denoted with QX0.

We observe n i.i.d. observations O1; : : : ; On of O � P0 D PFX;0;G0 . Let
 0.W / D E0.Y j W / be the parameter of interest, where Y � log.T / denotes
log-survival time. The corresponding full-data loss function is given byL. /.X/ D
.Y �  .W //2:

 0 D argmin 

Z
L. /dFX0:

Suppose that

NG0.T j X/ � P.C > t j X/jtDT > ı > 0; FX0-a.e. for some ı > 0: (4.9)
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Then it follows that

 0.W / D argmin 

Z
L. /dFX0

D argmin EFX0.Y �  .W //2

D argmin EP0

�
L. /

�

NG0.T j X/
�
;

which is called the inverse probability of censoring weighted full data loss function
[61, 83]. Thus, if we choose

LG0. / D L. /
�

NG0.T j X/;

then  0 D argmin E0LG0. /. A more sophisticated loss function is obtained
by applying the so called double robust (DR) mapping [83, Chap. 3] to full data
function L. /:

LQ0;G0 . / D L. /
�

NG0.T j X/

C
Z
EQX0;G0

�
LG0. / j NX.u/; QT � u

�
dMG0.u/; (4.10)

where

dMG0.u/ D I. QT 2 du; � D 0/� I
� QT � u

� dG0.u j X/
NG0.u� j X/:

Here, EQX0;G0 D EP0 . In [83] it is shown that, if G1 satisfies the condition (4.9),
then

EP0LQ1;G1 . / D EFX0L. / if either G1 D G0 or Q1 D Q0:

In [83], this identity is referred to as double robustness of the estimating function
for full-data parameter E0L. / w.r.t. misspecification of Q0; g0. Thus, if �0 is an
element of � .P0/ � f.Q;G/ W Q D Q0 or G D G0g, where G ranges over
conditional distributions satisfying (4.9), then

 0 D argmin EP0L�0. / if �0 2 � .P0/:

Given candidate estimators O�˛.Pn/, the corresponding distance is given by:

d. ˛;n;  0/ D
Z
L�0. ˛;n/� L�0. 0/dP0

D
Z
. ˛;n.w/ �  0.w//2 dP0.w/:
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To define this set of candidate estimators indexed by ˛, it remains to define a library
of algorithms for estimating  0, together with a parametric family of weighted
combinations of these estimators indexed by ˛. The library of candidate estimators
might include, for example, estimators based on parametric Cox proportional hazard
models or (log) linear regression models, as well as data adaptive estimators.

For the IPCW-choice of loss function, we have:

˛n D argmin˛EBn
X

i WBn.i/D1

�
Yi � O�˛

�
P0
n;Bn

�
.Wi /

�2 �i

NG0
n;Bn

.Ti j Wi/
;

where NG0
n;Bn

denotes an estimator of the survivor function NG0.	 j X/ based on the
training sample. We note that this cross-validation selector reduces to the standard
cross-validation selector in prediction (Sect. 4.4.1) in the special case that there is
no censoring. The asymptotic validity of this selector relies on the consistency of
the estimator of the survivor function NG0. If one uses the DR loss function, then the
asymptotic validity of the corresponding selector only relies on the consistency of
either NGn or of the estimator QXn of QX0, and the assumption that (4.9) is satisfied
at the limit of NGn.

4.4.5 Estimation of Causal Dose–Response Curve

Estimation of the causal dose–response curve provides a second example of the
case of a nonpathwise differentiable parameter indexed by nuisance parameter.
Let X D ..Y.a/; a 2 A /;W / � FX0 be the full data structure of interest,
where W denotes baseline covariates and Y.a/ denotes the outcome on a subject
if the subject would have taken treatment a. Such potential outcomes Y.a/ are
called counterfactuals (e.g., [69]). Let A be a random variable with conditional
probability distribution g0.a j X/ � P.A D a j X/, a 2 A , which denotes
the treatment the subject actually took; we only observe the potential outcome
indexed by the treatment the subject took. Thus, we observe n i.i.d. observations
of O D .W;A; Y � Y.A//, where Y denotes the observed outcome corresponding
with the treatment taken by the subject. We assume that treatment is randomized
within strata of W : g0.a j X/ D g0.a j W / for all a 2 A . We have that the
distribution P0 D PFX0;g0 is indexed by the full data distribution FX0 and the
conditional density g0 (referred to as the treatment mechanism). Suppose that the
parameter of interest is  0.a; V / D EFX0.Y.a/ j V /, where V is a user supplied
baseline covariate that can be extracted from W . That is, we want to estimate the
multivariate regression of the vector .Y.a/ W a 2 A / of potential outcomes on V . If
we would observe the full-data structureX , then this would be the same problem as
covered in the previous multivariate prediction example, and we could use as loss
function

L. /.X/ D
Z

a2A
.Y.a/ �  .a; V //2d�.a/;
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for some measure � so that the conditional distribution of A, given W , dominated
by �. Thus, we have

 0 D argmin EFX0L. /:

However, in this example, we only observe one of the outcomes Y.A/ for each
subject so that the loss function L. / is not a function of the observed data
structureO . A fundamental objective in the estimating function theory for censored
data structures presented in [83] involves mapping an estimating function of a
full data structure into an observed data function which has the same expectation
as the full data function. In particular, [83] provide an inverse probability of
censoring weighted mapping and an optimal (i.e., minimal variance) DR mapping.
Consequently, we can choose as loss function the inverse probability of treatment
weighted (IPTW) or DR mapping applied to this full data loss function L.X; /
[83, Sect. 6.3]. The DR mapping is given by

L�0. / D .Y �  .A; V //2
g0.A j W / � 1

g0.A j W /E0..Y �  .A; V //2 j A;W /

C
Z

a2A
E0..Y �  .A; V //2 j A D a;W /d�.a/:

Here, �0 D .g0;Q0/ and Q0.A;W / D .E0.Y j A;W /;E0.Y 2 j A;W //. Note
that the conditional expectations in this observed data loss function are indeed
identified by these first two conditional moments of the conditional distribution of
Y , given A;W . It can be verified [83, Sect. 6.3] that for any treatment mechanism
g1 satisfying the so-called experimental treatment assignment assumption (ETA),
that is, mina2A g1.a j W / > 0 P0-a.e., we have

EP0LQ1;g1. / D EFX0L. / if either g1 D g0 or Q1 D Q0:

In [83], this identity is referred to as double robustness of the augmented IPCW
estimating function for E0L.X; / w.r.t. misspecification of Q0; g0. Thus, if �0 is
an element of � .P0/ � f.Q; g/ W Q D Q0 or g D g0g, where g ranges over
conditional distributions satisfying ETA, then

 0 D argmin EP0L�0. /:

Consequently, for any �0 2 � .P0/, we have

d. ˛;n;  0/ D
Z

a2A

Z
. ˛;n.a; V /�  0.a; V //

2 dP0.V /d�.a/:

Let O�j .Pn/ be an estimator of  0 based on n i.i.d. observationsO1; : : : ; On. For
example, O�j .Pn/ is an IPTW estimator, double robust IPTW estimator or targeted
maximum likelihood estimator corresponding to a j -specific marginal structural
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model E.Y.a/ j V / D mj .a; V j ˇj / (see [60], and [83]). Now, O�˛.Pn/ could be
defined as the ˛-specific weighted combination over the j -specific algorithms in the
library, each of which is itself an estimator of E.Y.a/jV /.

Given an estimator O� .Pn/ of .Q0; g0/, our cross-validation selector ˛n is
given by:

˛n D argmin˛EBn

nX
iD1

I.Bn.i/ D 1/L O� .P0n;Bn/
� O�˛

�
P0
n;Bn

��
.Oi /:

A general data-adaptive estimator of the treatment specific mean based on this cross-
validation selector was developed and programmed in [94].

Application of our general Theorem 1 yields a finite sample result and asymptotic
optimality for this selector ˛n under specific conditions. One of the main conditions
is that either gn is consistent for g0 orQn is consistent forQ0 at a rate faster than the
rate at which  0 is estimated. Informally, in other words, the wished for optimality
results are achieved in settings where estimation of the nuisance parameter presents
an easier estimation problem than estimation of  0.

Estimation of the causal dose–response curve provides an example of a nonlinear
risk function which is linear for a known nuisance parameter. As a result, the above
estimator of the risk, based on taking the empirical mean of a plug-in estimator of the
loss function (i.e., an estimator of the loss function based on plugging in an estimate
of the nuisance parameter �0) will provide a super learner with the desired optimality
properties in some but not all scenarios. For example, if the treatment mechanism g0
is known or is correctly modeled by a parametric model, then the cross-validation
selector will perform as if it is not indexed by a nuisance parameter, and thus will be
asymptotically equivalent with the corresponding oracle selector. However, in other
settings nuisance parameter estimation may present a sufficient challenge such that
the risk estimator presented here, corresponding to the empirical mean of a plug in
estimator of the loss function, will no longer provide a good estimate of the true
risk. In particular, if treatment probabilities can be close to zero (i.e., if there are
“practical” violations of the experimental treatment assignment assumption) then
the empirical estimator of the risk presented here is very sensitive to variations in
the estimator of the treatment mechanism g0, due to the fact that this empirical risk
estimator is not a substitution estimator. In such settings, a robust approach to risk
estimation is required. We return to this challenge in Sect. 4.7 by using targeted
minimum loss-based estimation.

4.5 Targeted Minimum Loss-Based Super Learning

The super learner template discussed up to this point in the chapter has focused
on estimation of nonpathwise differentiable parameters. In this section, we turn to
the problem of construction of an estimator of a pathwise differentiable parameter.
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We are motivated to develop an extension of our initial super learning template
by two considerations. First, the optimality result for the cross-validation selector
among candidate estimators of the target parameter presented in Sect. 4.3 relies
on the assumption that any nuisance parameter (required to estimate the risk) is
easy to estimate relative to the target parameter itself, and thus the empirical mean
of a plug in estimator of the loss function provides a good estimator of the risk.
Second, the optimality theory for the cross-validation selector that formed the
principle of super learning applies to candidate estimators that will not achieve the
rate 1=

p
n-rate of convergence. Since pathwise differentiable parameters can be

estimated, in principle, at the (best possible) rate 1=
p
n, we can no longer rely on

the super learner presented in Sect. 4.2 to provide us with the optimal estimator of a
pathwise differentiable parameter.

One wants estimators of a pathwise differentiable parameter to be asymptotically
linear and preferably asymptotically efficient according to semiparametric efficiency
theory, as developed for the class of regular estimators. Super learning can provide a
crucial ingredient to achieve the desired asymptotic linearity by providing a tool for
estimating nonpathwise differentiable nuisance parameters for a target parameter
that is pathwise differentiable. However, an additional targeted bias reduction step
must then be employed. In addition, to make estimators of the target parameter finite
sample robust, it is preferable that these estimators respect the global constraints of
the model and target parameter. This latter property can be achieved by defining
the estimators as substitution/plug-in estimators. Finally, one wants to provide valid
estimators of the variance of these estimators so that confidence intervals can be
constructed. We review here the method of targeted minimum loss-based learning
that was developed for the estimation of pathwise differentiable parameters with
these motivations.

4.5.1 General Algorithm

Let O be the observed data structure, and let P0 be its probability distribution.
In addition, let M be the statistical model for P0, and let � W M ! IRd be
a pathwise differentiable d -dimensional parameter. Let D�.P / be the canonical
gradient of the pathwise derivative at P 2 M , which is also called the efficient
influence curve at P . One observes n i.i.d. copies O1; : : : ; On of O and one wishes
to construct an estimator of �.P0/. Suppose that Q0 D Q.P0/ represents a
parameter Q W M ! Q so that for some �1 we have �.P / D �1.Q.P // for
all P 2 M . Let Q D fQ.P/ W P 2 M g be the parameter space for Q. For
notational convenience, we will use notation �.P / and �.Q/ interchangeably. We
wish to construct a substitution estimator �.Q�

n/ of  0 obtained by substitution
of an estimator Q�

n 2 Q of Q0 into the parameter mapping � . Let L.Q/ be
a loss function for Q0 so that Q0 D arg minQ2Q P0L.Q/. We will allow this
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loss function to be indexed by a nuisance parameter: L.Q/ D Lg0.Q/ for some
unknown nuisance parameter g0 D G.P0/. Given an estimator of g0, one can use
loss-based (e.g., super) learning to construct an estimator Q0

n of Q0

However, we are not satisfied with a good estimator of Q0. Instead, we wish
to construct an optimal estimator of �.Q0/, a lower dimensional parameter. We
pursue this goal by constructing an updated estimator Q�

n such that Q�
n and gn

solve a particular estimating equation PnD.Q�
n ; gn/ D 0 for a user-supplied target-

parameter-specific estimating function D.Q; g/. The choice of this estimating
function D is tailored so that solving this equation implies good properties for the
substitution estimator �.Q�

n/ of  0. For example, D.Q0; g0/ is often defined as
the canonical gradient D�.Q0; g0/ (i.e., efficient influence curve) of the pathwise
derivative of � at P0. In this case, Q�

n and gn will solve the efficient influence
curve estimating equation, a property which is known to imply that �.Q�

n/ is
asymptotically linear with influence cure equal to the efficient influence curve under
appropriate conditions.

For any possible .Q; g/, let fQg."/ W "g � Q be a submodel with a finite-
dimensional parameter " that contains Q at " D 0, typically indexed by g, that
satisfies the following local condition at " D 0:

d
d"Lg.Qg."//

ˇ̌
"D0 D D.Q; g/:

The targeted minimum loss based estimator (TMLE) is now defined by the following
iterative algorithm. Start with initial estimator Q0

n, and for k D 1; : : :, define Qk
n D

Qk�1
n;gn

�
"kn
�
, where "kn D arg min" PnLgn

�
Qk�1
n;gn
."/
�

, and stop at step k when "kn 
 0.

If "kn D 0 and it is a local minima at an interior point, then it follows that the final
update Q�

n D Qk
n solves 0 D PnD

�
Q�
n ; gn

�
. It is also possible to simultaneously

update the nuisance parameter gn in the loss function. The substitution estimator
�.Q�

n/ is the targeted minimum-loss-based estimator of  0.

Suppose d
d"j
Lg.Qg."//

ˇ̌
ˇ
"D0 D Dj .Q; g/, while D.Q; g/ D P

j Dj .Q; g/.

One can also select an ordering for ."1; : : : ; "J / (e.g., starting at "J and going
backward) and, according to this ordering, iteratively carry out the update step
Qk
n D Qk�1

n;gn

�
"kn
�
, but where "kn is now obtained by minimizing PnLgn.Q

k�1
n;gn
."//

only over the next "-component according to the ordering of the "-components,
setting all other components of " equal to zero. The next "-component of the last
"-component in this ordering is defined as the first "-component in the ordering,
so that one keeps circling through all "-components. At convergence, we have
PnDj

�
Q�
n ; gn

� D 0 for all j , and thus, in particular, PnD
�
Q�
n ; gn

� D 0.
The asymptotic linearity of �

�
Q�
n

�
can now be based on the fact thatQ�

n solves
the estimating equation corresponding to the estimating function D, and on the
statistical properties of nuisance parameter

�
Q�
n ; gn

�
as an estimator of Q0; g0. By

selecting a loss function for Q0, and a fluctuation working model so that the linear
span of the derivative of Lg.Qg."// at " D 0 includes the components of the
efficient influence curve of � at P , one obtains a TMLE that is locally efficient
under appropriate conditions.



4 Targeted Learning 141

It remains to choose a loss function for Q0. One option is to use a standard
loss function such as the—log likelihood. However, more targeted choices of loss
function are also available. The next subsection discusses one specific alternative
choice of loss function that is particularly attractive in that it is able to construct
a more targeted initial estimator Q0

n of Q0 in the case that g0 is easy to estimate
relative to Q0, thereby enhancing efficiency of the resulting TMLE [84]. Other
targeted loss functions are presented in [82].

4.5.2 The Squared Efficient Influence Curve Loss
for Selecting Initial Estimator or to Select Among
Candidate TMLEs

Let �.Q0/ 2 IRd be a d-dimensional parameter of Q0 which is pathwise
differentiable with efficient influence curve D�.Q0; g0/ at P0 2 M , where g0
is some nuisance parameter. In many cases, the efficient influence curve can be
represented as D�. 0;Q0; g0/.

Consider the loss function Lg0; 0.Q/ D D�.Q; g0/2 and assume that D�
satisfies arg minQ P0Lg0; 0.Q/ D Q0 if the minimum is taken over all Q 2 Q
that satisfy �.Q/ D  0, and for each Q with �.Q/ D  0, D�.Q0; g0/ D
˘.D�.Q; g0/jT .P0//, where T .P0/ is a subspace of L20.P0/ such as the tangent
space of the model at P0. One can view both g0 as well as 0 as nuisance parameters
of this loss function for Q0. Let dg0; 0.Q;Q0/ D P0fLg0; 0.Q/ � Lg0; 0.Q0/g
denote the loss-function-based dissimilarity. By the Theorem of Pythagoras in
L20.P0/, we have

dg0; 0 .Q;Q0/ D P0 fD�.Q; g0/ �D�.Q0; g0/g2 :

Thus, the loss-based dissimilarity is theL2.P0/-norm of the efficient influence curve
atQminus the true efficient influence curve atQ0. This is therefore an excellent loss
function forQ0 since it targets what is needed to efficiently estimate  0. Therefore,
we wish to employ a super learner based on this loss function, which can then be
incorporated as initial estimator in the TMLE, or we can use its cross-validation
selector to select among different candidate targeted maximum likelihood estimators
indexed by different initial estimators ofQ0. For that purpose, we have to verify the
conditions of Theorem 1.

Assume that the loss function is bounded: M1 � supQ j Lg0; 0.Q/ � Lg0; 0
.Q0/ j< 1. This holds if D�.Q; g0/ is a uniformly bounded function
in O uniformly in Q. In addition, we need that P0

˚
Lg0; 0.Q/�Lg0; 0.Q0/

2 �
M2P0fLg0; 0.Q/ � Lg0; 0.Q0/g. By the Theorem of Pythagoras, we have
P0Lg0; 0 .Q/ � P0Lg0; 0.Q0/ D P0fD�.Q; g0/ � D�.Q0; g0/g2. Thus, to
prove the second property of the loss function Lg0 , it remains to show that
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P0fD�2.Q; g0/ � D�2.Q0; g0/g2 � M2P0fD�.Q; g0/ � D�.Q0; g0/g2 for some
M2 < 1. The latter trivially holds for boundedD�:

P0fD�2.Q; g0/ �D�2.Q0; g0/g2

D P0fD�.Q; g0/�D�.Q0; g0/g2fD�.Q; g0/CD�.Q0; g0/g2

� supo j fD�.Q; g0/CD�.Q0; g0/g2 j P0fD�.Q; g0/�D�.Q0; g0/g2;

which completes the proof of second property.
This allows us to apply the oracle inequality for the cross-validation selector

as presented in [81] and Theorem 1 above with g0 treated as known: if the cross-
validation selector ˛n is defined as a minimizer over a grid withK.n/ ˛-values, then
for any ı > 0,

Edg0; 0

� OQ˛n

�
P0
n;Bn

�
;Q0

�
� .1C 2ı/Emin

˛
EBndg0; 0

� OQ˛

�
P0
n;Bn

�
;Q0

�

CC.M1;M2; ı/
logK.n/

np
;

where C.M1;M2; ı/ is a specified constant. The Q̨n that attains the minimum on the
right-hand side is referred to as the oracle selector that selects the ˛ that minimizes
the dissimilarity with Q0 for the given sample Pn. By choosing a grid with width
1=nwe obtain a grid that is more than fine enough so that no precision is lost. In that
case, the logK.n/ is bounded by a constant times logn. By Theorem 1 we also have
a finite sample oracle inequality for the case that g0;  0 in the loss functionLg0; 0 is
estimated with .gn;  n/. From this finite sample inequality it follows that, if gn;  n
converges faster to g0;  0 than Q�̨

n;n
converges to Q0, then the finite sample oracle

inequality is asymptotically equivalent with the above one (i.e., the estimation of gn
has an asymptotically negligible effect). For example, if g0 is known, then one can
construct root-n estimators  n so that this would hold.

4.6 Targeted Minimum Loss Based Estimation in Variable
Importance Analysis

Suppose one observes n i.i.d. copies of O D .V; Y /, where Y is a binary outcome,
and V is a high-dimensional covariate vector. One is often interested in assessing
the effect of one univariate covariate component of V . LetA be such a variable, and,
for the sake of illustration, let us assume A is binary. LetW be the set of adjustment
variables contained in V one wishes to adjust for. So .A;W / is a function of V .
A particular measure of variable importance of the variable A can now be defined
as follows:

 0 D E0.E0.Y j A D 1;W /� E0.Y j A D 0;W //:
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Other measures can be considered as well. In a variable importance analysis, one
would estimate such a target parameter across a large list of variables (i.e., A), with
corresponding adjustment sets (i.e., W ). One can then carry out multiple testing
methods to test all the resulting null hypotheses while controlling a specified type-I
error rate. We refer to [4] for a particular application of such a TMLE-based variable
importance analysis involving assessment of the effect of mutations in the HIV virus
on resistance to a drug.

Let the statistical model M be nonparametric. We note that  0 D �.Q0/ where
Q0 D �

QW;0; NQ0

�
, QW;0 denotes the probability distribution of W under P0, and

NQ0.A;W / D E0.Y j A;W /. Let g0 be the conditional distribution of A, given
W . The efficient influence curveD�.P / is given by

D�.P /.O/ D H.g/.A;W /
�
Y � NQ.A;W /�C NQ.1;W /� NQ.0;W /� �.Q/;

where NQ.a;W / D EP .Y j W;A D a/, and H.g/.A;W / D .2A� 1/=g.A j W /.

4.6.1 The TMLE

If Y is binary, then we use the fluctuation working model logit NQ."/ D logit NQ C
"H.g/ and use as loss function for NQ the log-likelihood for a binary distribution

given by L
� NQ� D � log

� NQY
�
1 � NQ�.1�Y /

�
. We can also propose a fluctuation

working model for QW with score DW .Q/ D NQ.1;W / � NQ.0;W / � �.Q/

being the appropriate component of the efficient influence curve D�.Q; g/, but
since we will use as initial estimator of QW;0 the empirical distribution QW;n, the
maximum likelihood estimator of the fluctuation parameter will be zero, so that
no updates of QW;n will occur. Let NQ0

n be an initial estimator of NQ0, and gn an
estimator of g0. The initial estimator of NQ0 could be a super learner based on
the squared efficient influence curve loss function (as described in Sect. 4.5.2), for
example, so that it is fully targeted to fit the efficient influence curve, and thereby
maximizes the efficiency of the resulting TMLE if gn is consistent. If one is not
comfortable relying on consistency of gn, then it is better to fit NQ0 with a loss
function Lgn.Q/ that is always valid, even if gn is inconsistent. For example, one
could use the log-likelihood loss, possibly penalized with cross-validated empirical
risk of the square of the efficient influence curve divided by n, as in [82]. One
now computes "n D arg min" PnL

� NQ0
n."/

�
, and one defines the TMLE update as

NQ1
n D NQ0

n."n/. Further iteration does not result in further updates, so that the TMLE
Q�
n is defined as Q�

n D �
QW;n; NQ1

n

�
. The TMLE of  0 is thus given by ��

Q�
n

� D 1=n
Pn

iD1
˚ NQ�

n .1;Wi/� NQ�
n.0;Wi/


. If Y is continuous with values in

.0; 1/, one can use the same loss function L
� NQ� and fluctuation function for

the conditional mean NQ. If Y is bounded in .a; b/, then one can transform the
outcome into Y � D .Y � a/=.b � a/ 2 .0; 1/ and apply this same TMLE. For
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continuous Y , one might alternatively consider the squared error loss function and
the linear fluctuation function; however, such a fluctuation function is not guaranteed
to respect known bounds on Y and is thus not generally recommended.

4.6.2 Influence Curve, Confidence Interval, and p-Value

Under regularity conditions,  �
n D �

�
Q�
n

�
is asymptotically linear at P0. In

particular, if gn is a consistent estimator of g0, then one can use as conservative
influence curve D�.Q; g0/, where Q denotes the possibly misspecified limit of
Q�
n . As a consequence, the variance of

p
n. �

n �  0/ can then be conservatively
estimated as

	2n D 1

n

nX
iD1

˚
D� �Q�

n ; gn
�
.Oi /

2
:

One can use as test-statistic for H0 W  0 D 0, tn D p
n �

n =	n �H0 N.0; 1/, and
asymptotic 0:95-confidence interval  �

n ˙ 1:96	n=
p
n.

If one estimates a whole collection of variable importance measures . 0.j / W j /
with the corresponding TMLEs, then the vector-TMLE . �

n .j / W j / is asymptot-
ically linear with a vector influence curve, so that statistical inference in terms of
multiple testing and simultaneous confidence intervals can now proceed based on
the multivariate normal limit distribution.

4.7 TMLE of Risk of Candidate Estimator of Nonpathwise
Differentiable Parameter

4.7.1 Motivation, Example, and Overview

Let � W M ! F be a nonpathwise differentiable parameter. LetR. ;P0/ be a risk
of a candidate  2 F so that  0 D arg min 2F R. ;P0/. We assume that for each
given  , the parameter P ! R. ;P / is a pathwise differentiable parameter on the
model M .

As a consequence, we can use TMLE to estimate this risk at any  . For loss
functions with a nuisance parameter, this will generally be a more targeted and
robust estimator than the empirical risk using a plug-in estimator of the nuisance
parameter: that is, the latter estimator corresponds with an estimating equation-
based estimator, and TMLE has fundamental advantages relative to such estimators.
In addition, the TMLE is defined for any risk function, not only for risk functions
defined by loss-functions indexed by a nuisance parameter. In particular, the TMLE
of the risk is not dependent on the particular parameterization chosen for this risk.
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We previously used cross-validated empirical means to estimate the risk. We now
use a CV-TMLE to estimate the risk, as presented in [96] and the corresponding
chapter in [84]. Subsequently, we use this targeted estimator of risk to propose a
cross-validation selector defined by the minimizer of the CV-TMLE of the risk for
a candidate estimator O� W MNP ! F among all candidate estimators.

We will demonstrate this with one of our previous examples: estimation of
the causal dose–response curve (Sect. 4.4.5). Let O D .W;A; Y /, where A is
a continuous dose of a drug, W baseline covariates, and Y is an outcome of
interest. Let  0.a/ D E0Y.a/ � E0E0.Y j A D a;W / be the marginal dose–
response curve, controlling for confounding by baseline covariatesW . Let M be the
nonparametric model and let F be all functions of a. The parameter � W M ! F
is not pathwise differentiable.

Let us now develop a risk function for  0. Let � be a measure that dominates
the conditional distribution of A, given W , on the set of possible dose values. In
other words, the true conditional distribution G0 of A, given W , has a density g0
w.r.t. �. Typically, � is the Lebesgue measure on an interval Œa; b� chosen so that
P0.A 2 Œa; b�/ D 1. We have

 0 D arg min
 
E0

Z

a

˚ NQ0.a;W / �  .a/2 d�.a/;

where NQ0.a;W / D E0.Y j A D a;W /. This risk function can be decomposed as

E0

Z

a

˚ NQ0.a;W /�  .a/
2

d�.a/ D
Z

a

E0 NQ2
0.W; a/d�.a/C

Z

a

 2.a/d�.a/

�2
Z

a

E0Y.a/ .a/d�.a/:

The first term does not depend on  and can thus be removed without affecting the
validity of the risk function. This yields the following relevant risk function for  0:

R. ;P0/ D
Z

a

 2.a/d�.a/� 2

Z

a

˚
E0 NQ0.a;W /


 .a/d�.a/:

In the sequel of this section we will present the TMLE of R. ;P0/, the CV-
TMLE of R. ;P0/, the CV-TMLE of the conditional risk of a candidate estimator
O� , the corresponding cross-validation selector. We defer presentation of an oracle

inequality for this cross-validation selector for future work.

4.7.2 TMLE of Risk

We start out with presenting the efficient influence curve for R. ;P0/, which will
provide the ingredient for construction of the TMLE of R. ;P0/.
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4.7.2.1 The Efficient Influence Curve of the Risk at a Candidate Value

The first term ofR. ;P0/ is a known value. We haveR. ;P0/ D R
a  

2.a/d�.a/�
2
0. /, where �. ;P / � R

afEPY.a/g .a/d�.a/, and 
0. / D �. ;P0/. If A
is discrete so that d�.a/ D h.a/ is a discrete measure with finite support, then the
efficient influence curve of this parameter P ! �. ;P / at P0 is given by

D�. ; P0/ D
X
a

D�
a .P0/ .a/h.a/;

where

D�
a .P0/ D I.A D a/

g0.A j W /.Y � NQ0.A;W //C NQ0.a;W /� E0Y.a/:

This yields the following formula for the efficient influence curve of �. ;P / if A
is discrete:

D�. ; P0/ D h.A/ .A/

g0.A j W /
�
Y � NQ0.A;W /

�C
Z

a

NQ0.a;W / .a/d�.a/ � 
0. /:

This is also the efficient influence curve of�. ;P / if A is continuous and d�.a/ D
h.a/da for some function h. It can be straightforwardly verified that this is indeed
the efficient influence curve: using the CAR model as in [83] it follows that (1) it is
a gradient in the model with the censoring mechanism g0 known, (2) it is orthogonal
to the tangent space of g0 for the nonparametric model that only assumes CAR, and
thereby is an element of the tangent space in the model in which g0 is known. For
this argument, one needs to recall that a gradient that is also an element of the tan-
gent space is a canonical gradient, and the canonical gradient in the model in which
g0 is known equals the canonical gradient in the model that only assumes CAR.

Let D�.P0;R0. // be the efficient influence curve of R. ;P / at P0. We will
also use the notation D�.Q0; g0; R0. // with Q0 D �

QW;0; NQ0

�
. Above, we

showed that

D�.P0;R0. // D �2h.A/ .A/
g0.A j W /

�
Y � NQ0.A;W /

� � 2

Z

a

NQ0.a;W / .a/d�.a/

C2
0. / D �2h.A/ .A/
g0.A j W /

�
Y � NQ0.A;W /

�

�2
Z

a

NQ0.a;W / .a/d�.a/ � R0. /C
Z
 2.a/d�.a/:

The efficient influence curve is DR: for g satisfying the positivity assumption
supa h.a/=g.a j W / < 1,

P0D
�.Q; g;R0. // D 0 if NQ D NQ0 or g D g0:
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4.7.2.2 TMLE

We now proceed with developing a TMLE of R0. / D R. ;P0/ for a given  .
For this we only need to develop the TMLE of 
0. / � R

afE0Y.a/g .a/d�.a/,
since R. ;P0/ D �2
0. / C  2. Suppose Y 2 Œ0; 1�. We consider the
loss function �L. NQ/ D Y log NQ.A;W / C .1 � Y / log

�
1 � NQ.A;W /� for NQ0,

and the logistic fluctuation model Logit NQg."/ D Logit NQ C "H�. ; g/, where
H�. ; g/.A;W / D fh.A/ .A/g=g.A j W /. The generalized score d

d"L
� NQg."/

�
at " D 0 equals H�. ; g/.Y � NQ/, the first component of the efficient influence
curve of the parameter R. ;P /. The marginal distribution of W is estimated with
the empirical distribution QW;n of W1; : : : ;Wn. One obtains an initial estimator
NQ0
n of NQ0, gn of g0, and computes the first step TMLE NQ1

n D NQ0
n;gn
."n/, where

"n D arg min" PnL
� NQ0

n;gn
."/
�

.

The TMLE of 
. ; P0/ is now given by the plug-in estimator


�
n . / D

Z

a

(
1

n

X
i

NQ1
n.a;Wi /

)
 .a/d�.a/:

This results in the following TMLE of the risk R. ;P0/:

R�
n . / D

Z

a

 2.a/d�.a/� 2
�
n . /:

Under regularity conditions, if g0 is known and gn D g0, this TMLE of R. ;P0/
is asymptotically linear with influence curve D�.Q; g0; R0. //, where Q D�
QW;0; NQ� and NQ is the possibly misspecified limit of NQ1

n. In particular, if NQ D NQ0,
then the TMLE is asymptotically efficient. If gn is a consistent maximum likelihood-
based estimator, then this influence curve D�.Q; g0; R0. // will be conserva-
tive.Thus, under these conditions, one can estimate the variance of the TMLE
R�
n . / as follows:

	2n D 1

n2

nX
iD1

˚
D� �Q�

n ; gn; R
�
n . /

�
.Oi /

2
:

This also allows one to construct confidence intervals for the true risk R. ;P0/. If

one uses adaptive estimators ONQ of NQ0, then it is often appropriate to replace the
estimate of the variance by a cross-validated estimator:

	2n;CV D 1

n
EBnP

1
n;Bn

n
D�

� OQ� �P0
n;Bn

�
; Og �P0

n;Bn

��o2
:

The TMLE R�
n. / is also DR in the sense that it is consistent if either gn is

consistent for g0 or the TMLE NQ�
n is consistent for NQ0.
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4.7.3 Why Estimate Risk with TMLE Instead of Using
the Mean of DR-IPTW Loss?

In Sect. 4.4.5 we presented the empirical estimate of risk E0
R
a fY.a/�  .a/g2

d�.a/ given by 1=n
P

i Lgn;Qn. /.Oi / based on an augmented-IPTW loss function
Lg;Q. / obtained by applying the augmented IPTW mapping to the full data loss
function

R
a
h.a/.Y.a/ �  .a//2d�.a/. Similarly, we presented the cross-validated

risk as a cross-validated mean of the augmented-IPTW loss function. This estimator
of risk is also DR and asymptotically efficient. However, just like estimating
equation-based estimators in general, this estimator does not respect the global
constraints of the model. For example, this empirical estimate of risk could even be
negative, even though the risk is known to be positive, and similarly this empirical
estimate of risk could be larger than the largest possible value of the risk as
implied by the bounds on Y . In contrast, the TMLE of the risk fully respects the
bounds enforced by the model because it is a substitution estimator. This enhanced
robustness of the TMLE will improve the robustness of the risk-estimators and
thereby we expect that this will also improve the practical performance of the
resulting cross-validation selector. This argument applies to any nonlinear risk
function.

4.7.4 Cross-Validated-TMLE of Risk at Candidate Value

Even though an empirical mean of a loss function (possibly indexed by an estimated
nuisance parameter) at a (not too adaptive) candidate estimator is a reasonable
estimator of the true conditional risk, the finite sample bias increases in the
adaptivity of the candidate estimator. This is the sole motivation for using cross-
validated empirical means when estimating the risk of candidate estimators in
the definition of the cross-validation selector. The TMLE corresponds with the
empirical mean of the loss function type estimator and will thereby also result
in an estimate of risk that is biased low for adaptive candidate estimators. [96]
present a CV-TMLE, which represents the analogue of the cross-validated empirical
mean of a loss function. As a result, the finite sample bias of the CV-TMLE is not
sensitive to the adaptivity of the candidate estimator. Indeed, the formal theorem in
[96] proves that the CV-TMLE will be asymptotically linear under conditions that
allow the candidate estimator and the initial estimator in the TMLE to be arbitrarily
adaptive. This makes the CV-TMLE appropriate as an estimator of the risk in the
cross-validation selector.

The CV-TMLE of 
0. /, and thereby R0. / D R. ;P0/ is defined as
follows. We refer to [96] and corresponding chapter in [84] for the introduction
and detailed understanding of this procedure.
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Suppose Y 2 Œ0; 1�. We consider the loss function �L � NQ� D Y log NQ.A;W /C
.1�Y / log

�
1 � NQ.A;W /� for NQ0, and the logistic fluctuation model Logit NQg."/ D

Logit NQ C "H�. ; g/, where H�. ; g/.A;W / D fh.A/ .A/g=g.A j W /. Let ONQ,
Og be initial estimators of NQ0 and g0. Let OQW .Pn/ be the empirical distribution of
W1; : : : ;Wn.

Let Bn be a cross-validation scheme. One defines

"CV
n D arg min

"
EBnP

1
n;Bn

L
� ONQ Og.P0n;Bn/

�
P0
n;Bn

�
."/
�
:

For each Bn, one now defines the update NQ�
n;Bn

� ONQ �
P0
n;Bn

� �
"CV
n

�
. The CV-TMLE

of 
0. / is now given by the plug-in estimator


�
n;CV. / D

Z

a

˚
EBnP

1
n;Bn

NQ�
n;Bn

.a; 	/ .a/d�.a/:

This results in the following CV-TMLE of the risk R. ;P0/:

R�
n;CV. / D

Z

a

 2.a/d�.a/� 2
�
n;CV. /:

Under weaker regularity conditions than needed for the regular TMLE of R0. /,
this CV-TMLE is asymptotically linear with the same influence curve as the
TMLE. Specifically, the CV-TMLE avoids any empirical process conditions on the
initial estimator so that arbitrary adaptive estimators of NQ0 are allowed, as shown in
[84, 96].

4.7.5 Cross-Validated-TMLE of Risk of Candidate Estimator

Consider a candidate estimator O� W MNP ! F . The optimal goal would be to

estimate the riskR
� O�.Pn/; P0

�
, treating O�.Pn/ as a given value. We could estimate

this with the CV-TMLE above of R0. / by setting  D O�.Pn/. A concern of
such an estimator is that the cross-validation selector "CV

n in the CV-TMLE does
not satisfy an oracle inequality, due to O�.Pn/ being random. In addition, related
to this, the analysis of this estimator of risk will now involve empirical process
conditions on an estimated efficient influence curveD�, contrary to the CV-TMLE
presented above for a fixed  . Therefore, we apply the CV-TMLE above, but
where  is replaced by O� �P0

n;Bn

�
in the estimator "CV

n , so that the cross-validation
selector "n;CV still satisfies the oracle inequality, and the analysis of the CV-TMLE
can follow the proof as given in [96], which avoids empirical process conditions.
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In this manner, it can be shown that our CV-TMLE of risk is still an asymptotically

linear estimator of the conditional riskRn
� O�;P0

�
� EBnR

� O� �P0
n;Bn

�
; P0

�
under

minimal conditions.
The proposed CV-TMLE of the conditional risk Rn

� O�;P0
�

of O� is de-

fined as follows. Suppose Y 2 Œ0; 1�. As before, we consider the loss function
�L. NQ/ D Y log NQ.A;W / C .1 � Y / log

�
1 � NQ.A;W /� for NQ0, the logistic

fluctuation model Logit NQg."/ D Logit NQC "H�. ; g/, where H�. ; g/.A;W / D
fh.A/ .A/g=g.AjW /. Let ONQ, Og be initial estimators of NQ0 and g0. The estimator
OQW is the empirical distribution. For each Bn, let

ONQ �
P0
n;Bn

�
."/ D ONQ �

P0
n;Bn

�C "H
� O� �P0

n;Bn

�
; Og �P0

n;Bn

��
:

Thus, the  in the clever covariate of the TMLE is now replaced by the candidate
estimator based on the training sample. With this modification, the CV-TMLE is
now defined as in previous subsection. Thus

"CV
n D arg min

"
EBnP

1
n;Bn

L
� ONQ �

P0
n;Bn

�
."/
�
:

For each Bn, one defines the update NQ�
n;Bn

� ONQ �
P0
n;Bn

� �
"CV
n

�
. This results in the

plug-in estimator


�
n;CV

� O�
�

D EBn

Z

a

˚
P1
n;Bn

NQ�
n;Bn

.a; 	/ O� �P0
n;Bn

�
.a/d�.a/;

the following CV-TMLE of the conditional risk Rn
� O�;P0

�
:

R�
n;CV

� O�
�

D EBn

Z

a

O� �P0
n;Bn

�2
.a/d�.a/� 2
�

n;CV

� O�
�
:

4.7.6 Cross-Validation Selector Based on CV-TMLE of Risk
of Candidate Estimator

LetR�
n

� O�
�

be the CV-TMLE presented above ofR. O�;P0; Pn/�EBnR. O�.P 0
n;Bn

/;

P0/. Given a collection of candidate estimators O�k , k D 1; : : : ; K , the cross-

validation selector is given by kn D arg mink R�
n

� O�k
�

. Let Qkn D arg mink EBnR

. O�k.P 0
n;Bn

/; P0/ be the comparable oracle selector. In future work, we will present

an oracle inequality comparing kn with Qkn, analogue to the previously presented
oracle inequalities for loss functions indexed by a nuisance parameter.
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4.8 Summary

In this chapter, we presented three very general templates for estimator selection
in semiparametric statistical models. Specifically, we first introduced the method of
super learning for nonpathwise differentiable parameters, in which cross-validation
was used to select among weighted combinations of some user-supplied family
of initial algorithms for estimating the target parameter  0. Specifically, the final
estimator (super learner) was defined as the weighted combination with the lowest
estimated risk, where risk was estimated as the cross-validated empirical mean of
some loss function. Finite sample oracle inequalities were presented that demon-
strated the asymptotic optimality of the resulting super learner for nonpathwise
differentiable parameters and linear risk functions, including the case of risk
functions indexed by a known nuisance parameter. We also discussed and provided
examples of cases in which the nuisance parameter was not known, but could be
estimated at a rate faster than the target parameter, resulting in approximately linear
risk functions and justifying application of the super learner template.

We next extended this method to build targeted estimators of pathwise differ-
entiable parameters using TMLE. Specifically, super learning was used to provide
an initial estimator of a nonpathwise differentiable nuisance parameter Q0, some
function of which provided a substitution estimator of the target parameter ( 0 D
�.Q0/ for some � ). In recognition of the fact that the initial estimator of Q0 was
optimized for a higher dimensional parameter than the target �.Q0/, the initial fit
was then updated with a targeted bias reduction step designed to result, whenever
possible, in an asymptotically efficient and maximally robust estimator of the target
parameter. We further introduced one possible choice of targeted loss function that
was designed to provide an initial estimator of Q0 with properties expected to
improve performance of the final estimator of the target parameter .

Finally, we returned to nonpathwise differentiable parameters and presented
novel results that generalize super learning to the case of nonlinear risk functions.
Specifically, we proposed a (cross-validated) TMLE of the risk itself. The resulting
super learner was defined as the weighted combination of algorithms for estimating
the target parameter that minimizes this improved risk estimate. This novel approach
has considerable theoretical appeal, full exploration of which, together with demon-
strations using real and simulated data, we leave as a topic for future work.

4.9 Bibliographical Remarks

Unified loss-function-based cross-validation was presented and developed in [81],
including the finite sample oracle inequality, the asymptotic equivalence of the
cross-validation selector, and the oracle selector. This general theory was applied
and further worked out in [26,43,72,86,87,91]. A finite sample result for the single-
split cross-validation selector was originally presented for the squared error loss
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function was in [37]. This result was generalized in [81] and [26] to handle general
cross-validation schemes and a general class of loss functions.

Loss-based super learning was presented in [88]. Super learner represents a gen-
eralization of the stacking algorithm in the classification context [45,95] and adapted
to the regression context by [10]. The name super learner was introduced because of
its theoretical optimality property implied by the finite sample oracle inequality, as
presented in [81]. The relationship between stacking and the model-mix algorithm
of [76] and the predictive sample-reuse method of [32] is discussed in [45]. For
some recent literature on ensemble learners, we refer to [16–18, 23, 24, 42, 78].
For some applications of super learning, including prediction with right-censored
survival data, we refer to chapters 15 and 16 in [53, 84].

Different types of cross-validation have been proposed in the literature, such as
V -fold cross-validation, bootstrap cross-validation, Monte Carlo cross-validation,
and leave-one-out cross-validation [2, 8, 9, 12, 14, 15, 27, 37, 40, 57, 76, 77]. We refer
to [51] for simulations demonstrating the good practical performance of likelihood-
based cross-validation relative to other selection methods in the context of mixture
models, such as Akaike’s information criterion [1,7], Bayesian Information criterion
[71], minimum description length [58], and informational complexity [6].

Reference [40] provides a comprehensive book on machine-learning algo-
rithms and related topics, including stepwise selection procedures, ridge regression,
LASSO, principal component regression, least angle regression, nearest neighbor
methods, random forests, support vector machines, neural networks, classification
methods, kernel smoothing methods, and ensemble learning. All these algorithms
could be included in the super learner to build a powerful library and thereby super
learner.

IPTW estimation is presented and discussed in detail in [41, 59]. Augmented
IPTW is originally developed in [61]. Further development on estimating equation
methodology and double robustnness is presented in [60, 62, 63, 83]. For a detailed
bibliography on locally efficient estimating equation methodology, we refer to
Chap. 1 in [83].

For the original paper on TMLE, we refer to [85]. Subsequent papers on TMLE
in observational and experimental studies include [3, 4, 36, 47–49, 53, 64–68, 73, 75,
79,82,93]. For a general comprehensive book on this topic, which includes most of
these applications on TMLE and many more, we refer to [84].

An original example of a particular type of TMLE (based on a DR parametric
regression model) for estimation of a causal effect of a point-treatment intervention
was presented in [70] and we refer to [67] for a detailed review of this earlier
literature and its relation to TMLE. References [80] and [74] (see also [84]) present
a closed form TMLE, based on the log-likelihood loss function, for estimation
of a causal effect of a multiple time point intervention on an outcome of interest
(including survival outcomes that are subject to right-censoring) based on general
longitudinal data structures.

We refer to [5] for a text on efficiency theory for semiparametric models. In
addition, [89] provides a thorough presentation on asymptotic statistics, and for
empirical process theory, we refer to [90].
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Chapter 5
Random Forests

Adele Cutler, D. Richard Cutler, and John R. Stevens

5.1 Introduction

Random Forests were introduced by Leo Breiman [6] who was inspired by earlier
work by Amit and Geman [2]. Although not obvious from the description in
[6], Random Forests are an extension of Breiman’s bagging idea [5] and were
developed as a competitor to boosting. Random Forests can be used for either a
categorical response variable, referred to in [6] as “classification,” or a continuous
response, referred to as “regression.” Similarly, the predictor variables can be either
categorical or continuous.

From a computational standpoint, Random Forests are appealing because they

• naturally handle both regression and (multiclass) classification;
• are relatively fast to train and to predict;
• depend only on one or two tuning parameters;
• have a built in estimate of generalization error;
• can be used directly for high-dimensional problems;
• can easily be implemented in parallel.

Statistically, Random Forests are appealing because of the additional features they
provide, such as

• measures of variable importance;
• differential class weighting;
• missing value imputation;
• visualization;
• outlier detection;
• unsupervised learning.
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This chapter gives an introduction to the Random Forest method for classification
and regression, including a brief description of the types of classification and
regression trees used in the Random Forests algorithm. The chapter describes how
out-of-bag data are used not only to give a fast estimate of generalization error
but also to estimate variable importance. A discussion of some important practical
issues such as tuning the algorithm and weighting classes to deal with unequal
sample sizes is also included. Methods for finding Random Forest proximities
and using them to give illuminating plots as well as imputing missing values are
presented. Finally, references to extensions of the Random Forest method are given.

5.2 The Random Forest Algorithm

As the name suggests, a Random Forest is a tree-based ensemble with each tree
depending on a collection of random variables. More formally, for a p-dimensional
random vector X D .X1; : : : ; Xp/T representing the real-valued input or predictor
variables and a random variable Y representing the real-valued response, we assume
an unknown joint distribution PXY .X; Y /. The goal is to find a prediction function
f .X/ for predicting Y . The prediction function is determined by a loss function
L.Y; f .X// and defined to minimize the expected value of the loss

EXY .L.Y; f .X/// (5.1)

where the subscripts denote expectation with respect to the joint distribution of X

and Y .
Intuitively, L.Y; f .X// is a measure of how close f .X/ is to Y ; it penalizes

values of f .X/ that are a long way from Y . Typical choices of L are squared error
loss L.Y; f .X// D .Y � f .X//2 for regression and zero-one loss for classification:

L.Y; f .X// D I.Y ¤ f .X// D
�

0 if Y D f .X/

1 otherwise:
(5.2)

It turns out (see, for example, [10, Sect. 2.4]) that minimizing EXY .L.Y; f .X///

for squared error loss gives the conditional expectation

f .x/ D E.Y jX D x/ (5.3)

otherwise known as the regression function. In the classification situation, if the set
of possible values of Y is denoted by Y , minimizing EXY .L.Y; f .X/// for zero
one loss gives

f .x/ D arg max
y2Y

P.Y D yjX D x/; (5.4)

otherwise known as the Bayes rule.
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Xi < c?

yes no

left
descendant

right
descendant

Fig. 5.1 Splitting on a
continuous predictor variable
Xi , using split point c

Ensembles construct f in terms of a collection of so-called “base learners”
h1.x/; : : : ; hJ .x/ and these base learners are combined to give the “ensemble
predictor” f .x/. In regression, the base learners are averaged

f .x/ D 1

J

JX
j D1

hj .x/; (5.5)

while in classification, f .x/ is the most frequently predicted class (“voting”)

f .x/ D arg max
y2Y

JX
j D1

I.y D hj .x//: (5.6)

In Random Forests the j th base learner is a tree denoted hj .X; �j /, where
�j is a collection of random variables and the �j ’s are independent for j D
1; : : : ; J . Although the definition of a Random Forest is very general, they are
almost invariably implemented in the specific way described in Subsect. 5.2.2. To
understand the Random Forest algorithm, it is important to have a fundamental
knowledge of the type of trees used as base learners.

5.2.1 Introduction to Classification and Regression Trees

The trees used in Random Forests are based on the binary recursive partitioning trees
in the monograph [4] and also described in [10, 14, 26]. These trees (Algorithm 1)
partition the predictor space using a sequence of binary partitions (“splits”) on
individual variables. The “root” node of the tree comprises the entire predictor
space. The nodes that are not split are called “terminal nodes” and form the final
partition of the predictor space. Each nonterminal node splits into two descendant
nodes, one on the left and one on the right, according to the value of one of the
predictor variables. For a continuous predictor variable, a split is determined by a
split point; points for which the predictor is smaller than the split point go to the
left, the rest go to the right (see Fig. 5.1).
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Xi ∈ S ⊂ Si?Fig. 5.2 Splitting on a
categorical predictor variable
Xi , using subset S � Si

A categorical predictor variable Xi takes values from a finite set of categories
Si D fsi;1; : : : ; si;mg. A split sends a subset of these categories S � Si to the left
and the remaining categories to the right (see Fig. 5.2).

The particular split a tree uses to partition a node into its two descendants is
chosen by considering every possible split on every predictor variable and choosing
the “best” according to some criterion. In the regression context, if the response
values at the node are y1; : : : ; yn, a typical splitting criterion is the mean squared
residual at the node

Q D 1

n

nX
iD1

.yi � Ny/2; (5.7)

where Ny D 1
n

Pn
iD1 yi is the predicted value at the node (the average of the response

values). In the classification context where there are K classes denoted 1; : : : ; K , a
typical splitting criterion is the Gini index

Q D
KX

k¤k0

Opk Opk0 ; (5.8)

where Opk is the proportion of class k observations in the node:

Opk D 1

n

nX
iD1

I.yi D k/: (5.9)

The splitting criterion gives a measure of “goodness of fit” (regression) or “pu-
rity” (classification) for a node, with large values representing poor fit (regression)
or an impure node (classification). A candidate split creates two descendant nodes,
one on the left and one on the right. Denoting the splitting criteria for the two
candidate descendants as QL and QR and their sample sizes by nL and nR, the
split is chosen to minimize Qsplit D nLQL C nRQR.

For a continuous predictor variable, finding the best possible split entails sorting
the values of the predictor and considering splits between every distinct pair of
consecutive values. Typically the midpoint of the interval is used, although any value
in the interval would suffice. The values of QL, QR and hence Qsplit are computed
for each of these possible split points, usually using a fast update algorithm. For a
categorical predictor variable, QL, QR, and Qsplit are computed for all possible
ways of choosing a subset of categories to go to each descendant node.
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Algorithm 1 Binary Recursive Partitioning

Let D D f.x1; y1/; : : : ; .xN ; yN /g denote the training data, with xi D
.xi;1; : : : ; xi;p/T .

1. Start with all observations .x1; y1/; : : : ; .xN ; yN / in a single node.
2. Repeat the following steps recursively for each unsplit node until the stopping

criterion is met:

a. Find the best binary split among all binary splits on all p predictors.
b. Split the node into two descendant nodes using the best split (Step 2a).

3. For prediction at x, pass x down the tree until it lands in a terminal node. Let
k denote the terminal node and let yk1 ; : : : ; ykn denote the response values of
the training data in node k. Predicted values of the response variable are given
by:

• Oh.x/ D Nyk D 1
n

Pn
iD1 yki for regression

• Oh.x/D arg maxy

Pn
iD1 I.yki Dy/ for classification, where I.yki Dy/D1 if

yki Dy and 0 otherwise.

Once a split has been selected, the data are partitioned into the two descendant
nodes and each of these nodes is treated in the same way as the original node. The
procedure continues recursively until a stopping criterion is met. For example, the
procedure may stop when all unsplit nodes contain fewer than some fixed number
of cases. When the stopping criterion is met, unsplit nodes are called “terminal
nodes.” A predicted value is obtained for all observations in the terminal nodes
by averaging the response for regression problems or computing the most frequent
class for classification problems. To predict at a new point, its set of predictor values
are used to pass the point down the tree until it falls into a terminal node and the
prediction for the terminal node is used as the prediction for the new point.

Often, trees are deliberately grown larger than necessary and “pruned” back to
prevent overfitting [4]. Although pruning is very important to prevent overfitting for
stand-alone trees, it is not used in Random Forests, so it will not be described here,
but the interested reader is referred to [4] or [14].

5.2.1.1 Example 1: Prostate Cancer Data

To illustrate regression trees, data from the prostate cancer study of [23], also
studied in [10] is used. The response variable is the level of prostate-specific antigen
(lpsa). The predictor variables are log cancer volume (lcavol), log prostate weight
(lweight), age, log of the amount of benign prostatic hyperplasia (lbph), seminal
vesicle invasion (svi), log of capsular penetration (lcp), Gleason score (gleason),
and percentage of Gleason scores 4 or 5 (pgg45). A regression tree was fit to two of
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Fig. 5.3 Regression tree for two-dimensional prostate cancer data (Example 1). The top panel
shows the tree diagram, the bottom left contains a perspective plot of the fitted regression surface,
the bottom right shows the partitioning of the predictor space

the predictor variables, namely, lcavol and lweight. The top panel of Fig. 5.3 shows
the regression tree. At each node, cases that satisfy the inequality go to the left, while
ones that do not satisfy the inequality go to the right. Each terminal node results in a
single predicted value, namely the average value of the response for the observations
falling into the node. At the bottom left, Fig. 5.3 shows a perspective plot of the
piecewise linear regression surface corresponding to the regression tree in the top
panel. On the bottom right, Fig. 5.3 shows the partitioning of the predictor space.
For continuous predictors such as these, the splits are parallel to the coordinate
axes and the predictor space is divided into (hyper-) rectangles, each with a single
predicted value. Each of the five rectangles corresponds to one of the terminal
nodes in the tree.

Trees are popular for a wide range of problems, in part because trees can model
complex interactions. The rank-based nature of the splits makes trees robust to
outliers and insensitive to monotone transformations of the predictor variables. A
summary of the characteristics that make trees popular, even for low-dimensional
problems, is [10, Sect. 10.7] that trees:
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• can model interactions;
• naturally handle both regression and (multiclass) classification;
• naturally handle both continuous and categorical predictor variables;
• handle missing values in the predictor variables;
• are robust to outliers in the predictor variables;
• are insensitive to monotone transformations of the predictor variables;
• scale well for large sample sizes;
• deal well with irrelevant predictor variables.

Neither support vector machines nor neural networks rate highly on any of the
above characteristics [10, Sect. 10.7]. On the downside, regression trees have sharp
jumps in the predictions at the edges of the nodes. Also they

• are not good at capturing relationships involving linear combinations of predictor
variables;

• are known to be unstable in the sense that if the data are perturbed slightly, the
tree can change substantially;

• are not as accurate as some of the more recently developed methods.

Trees enjoy a mixed reception when it comes to interpretability. Tree diagrams
are easily understood, but interpretation can be difficult because adjacent or nearby
rectangles can appear in quite distant parts of the tree. A less obvious problem occurs
when two or more predictor variables are highly correlated within a node. Such
variables are called surrogates, and lead to similar splits of the node. However, they
make interpretation more difficult because different surrogates may be selected for
splits at this and descendant nodes. If there are only a few predictor variables, good
software can help keep track of surrogates, but in very high-dimensional examples
the task becomes much more difficult and it may be impossible to extract a coherent
story from the tree diagram.

Perhaps the single largest drawback of trees is that they are not as accurate as
more recently developed methods. However, they are the building blocks of many
ensemble methods including Random Forests.

5.2.2 Random Forest Definition

As mentioned earlier in this section, a Random Forest uses trees hj .X; �j /

as base learners. For training data D D f.x1; y1/; : : : ; .xN ; yN /g, where
xi D .xi;1; : : : ; xi;p/T denotes the p predictors and yi denotes the response, and a

particular realization �j of �j , the fitted tree is denoted Ohj .x; �j ; D/. While this is
the original formulation from Breiman [6], in practice the random component �j is
not considered explicitly but is implicitly used to inject randomness in two ways.
First, as with bagging, each tree is fit to an independent bootstrap sample from
the original data. The randomization involved in bootstrap sampling gives one part
of �j . Second, when splitting a node, the best split is found over a randomly selected
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Algorithm 2 Random Forests
Let D D f.x1; y1/; : : : ; .xN ; yN /g denote the training data, with xi D
.xi;1; : : : ; xi;p/T . For j D 1 to J :

1. Take a bootstrap sample Dj of size N from D .
2. Using the bootstrap sample Dj as the training data, fit a tree using binary

recursive partitioning (Subsect. 5.2.1):

a. Start with all observations in a single node.
b. Repeat the following steps recursively for each unsplit node until the

stopping criterion is met:

(i) Select m predictors at random from the p available predictors.
(ii) Find the best binary split among all binary splits on the m predictors

from Step (i).
(iii) Split the node into two descendant nodes using the split from Step (ii).

To make a prediction at a new point x,

• Of .x/ D 1
J

PJ
j D1

Ohj .x/ for regression

• Of .x/ D arg maxy

PJ
j D1 I

� Ohj .x/ D y
�

for classification

where Ohj .x/ is the prediction of the response variable at x using the j th tree
(Algorithm 1).

subset of m predictor variables instead of all p predictors, independently at each
node. The randomization used to sample the predictors gives the remaining part
of �j .

The trees are grown without pruning. Initially, Breiman [6] suggested growing
them until the terminal nodes were pure (classification) or until there were fewer
than a prespecified number of data points in each terminal node (regression). More
recently [21] suggests controlling the maximum number of terminal nodes.

The resulting trees are combined by unweighted voting if the response is
categorical (classification) or unweighted averaging if the response is continuous
(regression), as described in Algorithm 2.

5.2.3 Using Out-of-Bag Data

When a bootstrap sample is taken from the data, some observations do not make
it into the bootstrap sample. These are called “out-of-bag data,” and are extremely
useful for estimating generalization error and variable importance (see Sect. 5.3).
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Algorithm 3 Out-of-Bag Predictions

Let Dj denote the j th bootstrap sample and Ohj .x/ denote the prediction at x from
the j th tree, for j D 1; : : : ; J . For i D 1 to N :

1. Let Ji D fj W .xi ; yi / … Dj g and let Ji be the cardinality of Ji

(Algorithm 2).
2. Define the out-of-bag prediction at xi to be

• Ofoob.xi / D 1
Ji

P
j 2Ji

Ohj .xi / for regression

• Ofoob.xi / D arg maxy

P
j 2Ji

I
� Ohj .xi / D y

�
for classification

where Ohj .xi / is the prediction of the response variable at xi using the j th tree
(Algorithm 1).

To estimate generalization error, first note that if the trees are large, predictions
naively obtained using all the trees will be overly optimistic if used to predict the
response variable for observations that were in the training set D . For this reason,
prediction of the response variable for observations that were in the training set is
only done using trees for which the observation is out-of-bag. These predictions are
called out-of-bag predictions (Algorithm 3).

For regression with squared error loss, generalization error is typically estimated
using the out-of-bag mean squared error (MSE):

MSEoob D 1

N

NX
iD1

�
yi � Ofoob.xi /

�2

(5.10)

where Ofoob.xi / is the out-of-bag prediction for observation i .
For classification with zero one loss, generalization error rate is estimated using

the out-of-bag error rate:

Eoob D 1

N

NX
iD1

I
�
yi ¤ Ofoob.xi /

�
: (5.11)

A common misconception is that the out-of-bag error rate is obtained by computing
the out-of-bag error rate for each tree, and averaging these error rates to give the
out-of-bag error rate for the forest. Instead, we use the error rate of the out-of-bag
predictions. This allows us to obtain a classwise error rate for each class, and an
out-of-bag “confusion matrix” by cross-tabulating yi and Ofoob.xi /.
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Fig. 5.4 Out-of-bag and test set error rate for Mease and Wyner data (Example 2)

5.2.3.1 Example 2 Mease and Wyner Data

To illustrate the use of the out-of-bag data, we consider a simulation model used
by Mease and Wyner [17]. For input variables X1; : : : ; Xp independently taken
from the standard uniform distribution U Œ0; 1�, the response variable Y 2 f0; 1g
is generated using

P.Y D 1jX1; : : : ; Xp/ D
�

q if
PL

lD1 Xl � L=2

1 � q otherwise:

For q < 0:5, the Bayes’ rule classifies an observation x1; : : : ; xp into class 0 ifPL
lD1 xl � L=2 and into class 1 otherwise. For q > 0:5, the class labels are

reversed, and in both cases the Bayes’ error is q. In this way, the first L predictors
are important and the remaining p � L predictors are noise. Using L D p D 2 and
q D 0:1, Fig. 5.4 shows the out-of-bag error estimate and the test set error estimate
for a training set of size N D 1000 and a test set of size 10,000 as the number of
trees increases from J D 1 to J D 500. The out-of-bag error rate tracks the test
set error rate quite closely in this Fig. 5.4. We chose a case for which the out-of-bag
error rate and test set error rate were quite similar. Other runs showed the out-of-bag
error rate to be somewhat higher or somewhat lower than the test set error rate. Table
5.1 shows the out-of-bag confusion matrix and test set confusion matrix for the run
shown in Fig. 5.4. Note that the out-of-bag confusion matrix is obtained using the
out-of-bag prediction for each observation in the training set against the nominal
class.
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Table 5.1 Out-of-bag and test set confusion matrices for Mease and Wyner data (Example 2)

Out-of-bag confusion matrix Test set confusion matrix

Predicted Predicted

Class 0 Class 1 Total Class 0 Class 1 Total

Nominal Class 0 417 58 475 Nominal Class 0 4409 626 5035
Nominal Class 1 64 461 525 Nominal Class 1 590 4375 4965
Total 481 519 1000 Total 4999 5001 10000

5.2.4 Tuning

Although Random Forests have the reputation of working quite well right out of the
box, there are three parameters that may be tuned to give improved accuracy for
particular situations:

• m, the number of randomly selected predictor variables chosen at each node
• J, the number of trees in the forest
• tree size, as measured by the smallest node size for splitting or the maximum

number of terminal nodes.

The only one of these parameters to which Random Forests is somewhat sensitive
appears to be m. In classification, the standard default is m D p

M , where M is the
total number of predictors. In regression, the default is m D N=3, where N is the
sample size. If tuning is necessary, m can be chosen using the out-of-bag error rate,
but then this no longer gives an unbiased estimate of generalization error. However,
typically Random Forests are not very sensitive to m, so fine-tuning is not required
and overfitting effects due to choice of m should be relatively small, as demonstrated
by [9].

For many ensemble methods, generalization error initially decreases as J

increases, but at some point J becomes too large and overfitting sets in, with
an associated increase in generalization error. This is not the case with Random
Forests. For small values of J , the out-of-bag estimate can be unstable and
inaccurate. However, as J increases Breiman showed [6] that the generalization
error for Random Forests converges almost surely to a limit. In practice, this means
J can be chosen as large as desired, without fear of increasing the generalization
error. The only real concern with J is that it not be too small, and usually the out-
of-bag error rate can be used to decide when J is large enough that the estimated
generalization error has stabilized. Often a plot such as that shown in Fig. 5.4 is
used to decide whether or not J is large enough.

Breiman’s original work [6] recommends growing very large trees. In a recent
paper by Segal and Xiao [21], the authors give a classification example for which a
forest of large trees overfits and suggest this was not observed in Breiman’s original
work because the benchmark data sets all came from the University of California at
Irvine (UCI) repository and happen to share properties that make large trees nearly
optimal. In problems for which large trees overfit, users can tune using either the
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number of nodes or the smallest nodesize. Out-of-bag error rates can be used to
choose the tuning parameter, understanding that such use will lead to a bias in the
estimated generalization error.

5.2.5 Weighting

Unbalanced data sets, where some classes are much smaller than others, present a
challenge to many classifiers. A naive classifier will work on getting the large classes
right, while allowing a high-error rate for the small classes. Random Forests has an
effective method for weighting the classes to give balanced results in unbalanced
data (www.math.usu.edu/�adele/forests). One reason to do this is that
the important predictor variables may be different when the method is forced to
pay greater attention to a small class. Even in the balanced case, the weights can
be adjusted to give lower error rates to decisions that have a high-misclassification
cost. For example, it is often more serious to incorrectly conclude that someone
is healthy than it would be to incorrectly conclude that someone is ill. Example 3
in Subsect. 5.3.1 illustrates the effect of different weights on permutation variable
importance.

5.3 Variable Importance

Measures of the importance of the predictor variables are useful for variable selec-
tion and for interpreting the fitted forest. While it is standard in many applications to
run a principal components analysis (PCA) to reduce dimensionality before fitting a
classifier or regression predictor, it is possible that the principal components do not
capture the important information for the prediction problem. In this case, it may be
preferable to obtain variable importance directly from the algorithm and then re-fit
using only the most important predictors.

5.3.1 Permutation Importance

Random Forests use an unusual but intuitive measure of variable importance. To
measure the importance of variable k, the following procedure is performed for each
tree. First, the out-of-bag observations are passed down the tree and the predicted
values are computed. Next, the values of variable k are randomly permuted in the
out-of-bag data, keeping all the other predictor variables fixed. These modified
out-of-bag data are passed down the tree and the predicted values are computed.
This process gives two sets of out-of-bag predictions for each observation: one set
obtained from real data, the other set from variable-k-permuted data.
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Algorithm 4 Permutation Variable Importance

To find the importance of variable k, for k D 1 to p:

1. (Find Oyi;j ) For i D 1 to N :

a. Let Ji D fj W .xi ; yi / … Dj g and let Ji be the cardinality of Ji

(Algorithm 2).
b. Let Oyi;j D Ohj .xi / for all j 2 Ji .

2. (Find Oy?
i;j ) For j D 1 to J :

a. Let Dj be the j th bootstrap sample (Algorithm 2).
b. Let Fj D fi W .xi ; yi / … Dj g.
c. Randomly permute the value of variable k for the data points fxi W i 2 Fj g

to give Pj D fxi
? W i 2 Fj g.

d. Let Oy?
i;j D Ohj .xi

?/ for all i 2 Fj .

3. For i D 1 to N :

• For classification: Impi D 1
Ji

P
j 2Ji

I
�
yi ¤ Oy?

i;j

�
� 1

Ji

P
j 2Ji

I.yi ¤ Oyi;j /.

• For regression: Impi D 1
Ji

P
j 2Ji

�
yi � Oy?

i;j

�2 � 1
Ji

P
j 2Ji

.yi � Oyi;j /2.

For classification, the difference between the error rate of the predictions
obtained from permuted data and those obtained using permuted data gives a
measure of variable importance for the observation. The same procedure is used for
regression, but using MSE instead of error rates. For classification, classwise vari-
able importance is computed by averaging over observations from the same class.
Overall variable importance is computed by averaging over all the observations.

Algorithm 4 gives the importance of a particular variable, denoted by k in the
algorithm description, on the predictions for a particular observation, denoted by i .
The values can be used as measures of local variable importance, or they can
be averaged over all observations to give measures of overall importance of the
variable. The largest values are generally plotted (Fig. 5.5).

Intuitively, the permutation-based importance of variable k is an estimate of the
how much the prediction error or MSE on a test set would increase if the value of
variable k were randomly permuted in the test set. In this sense, it is similar to the
coefficient-based measures of importance used in methods such as linear regression
or logistic regression—they measure how much the prediction would change if the
value of the predictor increased by one unit, keeping everything else the same. Quite
a different measure is obtained, for both Random Forests and classical methods, if
variable k is removed and the model is refit, because in this case predictors that
are correlated with the one of interest can give a similar fit and make the variable
appear unimportant. In contrast, if an important predictor variable is correlated with
other predictor variables, Random Forests sometimes splits on one and sometimes
on another, due to the random choice of predictors at each node. Therefore, Random
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variable importance, prostate
data (Example 1)

Forests permutation importance tends to identify all of the correlated predictors as
important if any one of them is important.

One attractive feature of all tree-based methods is their ability to capture complex
interactions between predictors. If Random Forests captures such an interaction, the
variables involved are likely to show up as “important” because randomly permuting
one of them destroys the predictive power of the interaction.

To illustrate the behavior of Random Forest permutation importance, a regression
forest was fit to the prostate data (Example 1). A permutation importance plot is
given in Fig. 5.5, showing that the three most important variables are lcavol, lweight,
and svi. Interestingly, these are the same three variables chosen by lasso (see [10,
Fig. 3.10]).

5.3.1.1 Example 3 Normal Mixture

To illustrate the behavior of Random Forest variable importance when classes are
weighted differently, consider a bivariate normal mixture of three classes

�1N.�1; I / C �2N.�2; I / C �3N.�3; I /;

where N.�; I / denotes the bivariate normal density with mean � and covariance
matrix the identity. Generating N D 300 observations from such a mixture with
�1 D .0; 0/T ; �2 D .0; 3/T ; �3 D .3; 3/T , and �1 D 0:4; �2 D 0:4; �3 D 0:2 gave



5 Random Forests 171

1

1

2

2

2

2

1 2

3

11

2

2
1

3

1

2

22
1

1

1

3 3
1

21
2

1
2

3

21

3

2 3

1

3

2

2

1

1

2

3

11 2
1

2

1
1

1

1

1

3

2

22
2

2

3

3

1
1

2

1

211
3

2

2
1

22

1 1

1

3

2
2

3
3

3

2

1

2
2

3

1
1

3

2

2
2

2

2 2
2

3 3

1
221

2

3
3

1

3

1

3

2

2

1

1

3

2
2

1

3

2

33

2
2

1 22

1

3

1
1

3
3

2
2

1
1

2
11

2

2
1

2

2

3

21

3

1 1

3

1
1

11
1

1
2

2

1

11

1

1

3

1

2
11

2

2

2

1

2

3
3

1

2

1

11

3

1

1

2
1

3

2
1
1

2

3

2

2 21

1

3

1

3

2

2

2

2

2
21

1 1 2

2

2

3
2

21 2

3

1 21 2

1

3

3

1
2
22

3
331

1

2
2

3 3
3

1

1

21

1

1
2

2

1
2 2

2

2
2

2 2

3

3
2

1

2 2
1

1 21

2
1 1

2

3

2
1

3

2
2

3

1

3

1

1

3

1

2

1

3

1

21
2

2

1

3

2

2

1
2

1

3 3

1

3

2
1

1
22

21 21

3

2
2

2

3
1

2

3

2
2

11

3

1 2

2

2

3

212

2

1
1

11

3 3

2

3

2

3

1

2

3

1

1
1

1

3

2
1

1

2

33

1

21
22

2
2

3

1
2

2
1

2

1

1

1
21

3

3

1

2

1

3

3

1

21

2
2

2

3

1
21

3

1

2

1

3

1

2

3

3

2

2

21

3

1

1
3

2
221 1

1

22

22
1

3

1
2

3

221
2

1

2

3

21 1
1

2
1 2

1
2

1

2
1 1

1

2

1

22

33

1

2
1

111

21

3

21
3

1
3

2
2

1
1

21

11 2 2

3

22

2

2
2

3

2

3

2
1

3

2

22
2

3

21

3

3
2

-2 0 2 4 6

-2
0

2
4

6

Variable 1

V
ar

ia
bl

e 
2

Fig. 5.6 Bivariate normal
mixture of three classes
(Example 3)

Table 5.2 Impact of class weights on error rates and permutation importance

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

Weights 1/3 1/3 1/3 1/7 1/7 5/7
Classwise error rate (percent) 8.2 13.0 8.9 8.7 17.7 5.0

Overall error rate (percent) 10.4 11.8
Permutation importance (variable 1) 32.7 73.8
Permutation importance (variable 2) 22.3 49.1

the data shown in Fig. 5.6. Fitting Random Forests using J D 500 trees and m D 1

for two different weighting schemes gave the results in Table 5.2. Equal weighting
gives the lowest overall error rate. Increasing the weight on class 3, the smallest
class, reduces the class 3 error rate from 8.9% to 5.0% and increases the error rates of
the other two classes, giving an overall increase in error rate from 10.4% to 11.8%.
More interestingly, equal weighting ranks variable 1 as more important than variable
2, while increasing the weight on class 3 reverses the ranking.

5.4 Proximities

Random Forests proximities are used for missing value imputation, and visualization.

5.4.1 Definition

The proximity between two observations is the proportion of the time that they end
up in the same terminal node, where the proportion is taken over the trees in the
forest. If two observations are always in the same terminal node, their proximity
will be 1. If they are never in the same terminal node, their proximity will be 0. The
proximity between two observations is a measure of how close together they are in
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predictor space, but it automatically gives more weight to predictors that are useful
for predicting the response. Observations that are very far apart in Euclidean space
may have quite a large proximity if they only differ on weak or irrelevant predictors,
while observations that are relatively close together in Euclidean space may have
relatively small proximities if they differ on predictors that are crucial for predicting
the response.

5.4.2 Missing Value Imputation

Random Forests imputes missing values using the proximities described above. The
procedure is iterative: an initial forest is built using median imputation, proximities
are calculated, and new imputations are obtained by a proximity-weighted average
for a continuous predictor or a proximity-weighted vote for a categorical predictor.
A new forest is built, giving new proximities and imputations. Usually five or six
iterations are sufficient to give stable imputations. Although no formal analysis has
been done, the fact that the method uses proximity-based nearest neighbors suggests
that it will be valid if values of the predictors are missing at random.

5.4.3 Visualization

From a statistical perspective, one of the difficult aspects of high-dimensional data
analysis is that it is not obvious how to get a good “feel” for the data. Are there
interesting patterns or structures, such as subgroups within the known classes? Are
there outliers? In a multiclass situation, are some of the groups separated while
others overlap? Random Forests provide a way to look at the data to give some
insight into these questions. This is done by computing proximities, deriving a
distance matrix, and performing classical multidimensional scaling (MDS) to obtain
two- or three-dimensional plots. Each point on such a plot represents one of the
observations and the distances between the points reproduce, as closely as possible,
the proximity-based distances. Such a plot can be used to pick out subgroups of
cases that almost always stay together in the trees, or outliers that are almost always
alone in a terminal node.

5.4.3.1 Example 4 Microarray Data

To illustrate the potential usefulness of visualization using the proximity matrix,
we consider the prostate cancer microarray data [22]. These data have 6033 gene
expression values for 102 arrays (50 normal samples and 52 tumor samples).
We used the normalization described by Dettling [8]. Figure 5.7 (left) shows the first
two dimensions of the MDS plot based on the Random Forest proximity matrix.



5 Random Forests 173

-0.4 0.0 0.4

-0
.4

0.
0

0.
4

MDS (Proximity)

Dim1

D
im

2

-3 -1 10 2 3

-3
-1

0
1

2
3

MDS (Euclidean)

Dim1

D
im

2

Fig. 5.7 MDS plot from the Random Forests proximities (left) and from Euclidean distance (right)
for Example 4. Solid circles represent cancer cases, open circles represent controls

A natural question at this point is whether it would be just as good to use
MDS on a conventional distance, such as Euclidean distance or one of the other
distances commonly used in cluster analysis. This can certainly be done, but
one of the difficulties is that a conventional distance can be dominated by noisy
and uninformative predictors that may drown out the effects of the important
predictors. This behavior can be seen in Fig. 5.7, which presents the MDS plot
derived from the proximity matrix and the MDS plot derived from Euclidean
distance for the microarray data in Example 4. The proximity plot reveals much
more structure than the plot based on Euclidean distances, including an outlier that
could be of interest to the investigators.

5.5 Software

Commercial software for Random Forests is available from www.salford-
systems.com. The R package is randomForest [15] and this, along with
R [19], is available from the CRAN website www.cran.r-project.org.
Open source FORTRAN software for Random Forests is available from
www.math.usu.edu/�adele/forests.

5.6 Summary

Random Forests are a multipurpose tool, applicable to both regression and classifi-
cation problems, including multiclass classification. They give an internal estimate
of generalization error so cross-validation is unnecessary. They can be tuned, but
often work quite well with default tuning parameters. Variable importance measures
are available, which can be used for variable selection. Random Forests produce
proximities, which can be used to impute missing values. Proximities can also

www.salford-systems.com
www.salford-systems.com
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provide a wealth of information by enabling novel visualizations of the data.
Random Forests have been successfully used for a wide variety of applications and
enjoy considerable popularity in several disciplines.

5.7 Bibliographical and Historical Remarks

The Random Forest algorithm was the last major work of Leo Breiman [6].
Theoretical developments have been difficult to achieve. In the original paper,

Breiman [6] suggested that Random Forests work by reducing correlation, while
keeping the variance relatively small. Lin and Jeon [16] show that RF behaves like a
nearest neighbor classifier with an adaptive metric. More recently, Biau et al. address
consistency [3].

Several extensions have been published, for example [9] developed a variable
selection procedure, [18] introduced quantile regression forests, and [12, 13] con-
sidered forests for survival analysis. More recently, [21] extends Random Forests
for multivariate responses. Amaratunga et al. [1] suggest an extension to very high-
dimensional data.

Applications of Random Forests are numerous and only a few can be mentioned
here. Statnikov [24] compares random forests and support vector machines for
microarray-based cancer classification. Schroff et al. [20] used Random Forests
for image segmentation. Chen et al. [7] use Random Forests to identify genetic
interactions, while Goldstein et al. [11, 25] apply Random Forests to SNP-based
genomewide association data.
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Chapter 6
Ensemble Learning by Negative Correlation
Learning

Huanhuan Chen, Anthony G. Cohn, and Xin Yao

6.1 Introduction

This chapter investigates a specific ensemble learning approach by negative
correlation learning (NCL) [21–23]. NCL is an ensemble learning algorithm which
considers the cooperation and interaction among the ensemble members. NCL
introduces a correlation penalty term into the cost function of each individual
learner so that each learner minimizes its mean-square-error (MSE) error together
with the correlation with other ensemble members.

The chapter describes the traditional algorithms of NCL and their robust
implementation, regularized negative correlation learning (RNCL) [8]. This chapter
also treats ensemble learning as an optimization problem to balance the trade-
off among accuracy, negative correlation, and regularization by a multi-objective
optimization algorithm [9]. The numerical results demonstrate the superiority of
negatively correlated ensembles. In general, negatively correlated ensembles can
be viewed as a framework, rather than an algorithm itself, meaning several other
learning techniques could make use of it.
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6.2 Negatively Correlated Ensemble

6.2.1 Ensemble Learning by Negative Correlation

NCL introduces a correlation penalty term into the error function of each individual
learner in the ensemble so that all the learners can be trained simultaneously on the
same training data set [20].

Given a training set .xn; yn/N
nD1, NCL combines M individual learners fi .x/ to

constitute the ensemble.

fens.xn/ D 1

M

MX

iD1

fi .xn/:

To train an individual learner fi , the cost function ei of fi is defined by

ei D
NX

nD1

.fi .xn/ � yn/2 C �pi ; (6.1)

where � is a weighting parameter on the penalty term pi :

pi D
NX

nD1

8
<

:.fi .xn/ � fens.xn//
X

j ¤i

�
fj .xn/ � fens.xn/

�
9
=

;

D �
NX

nD1

.fi .xn/ � fens.xn//2 : (6.2)

The first term on the right-hand side of (6.1) is the empirical training error of fi .
The second term pi is a correlation penalty function. The purpose of minimizing pi

is to negatively correlate each learner’s error with errors for the rest of the ensemble.
The � parameter controls the trade-off between the training error term and the
penalty term. With � D 0, we would have an ensemble that is exactly equivalent
to training a set of networks independently of one another. If � is increased, more
and more emphasis would be placed on minimizing the correlation.

The parameter � is crucial for the generalization performance. The � parameter
should be neither negative nor too large. Negative parameters will lead the ensemble
to be positively correlated, large positive values will cause the Hessian matrix
H D @2ei

@wi @wj
to be nonpositive definite (nPD). Although the state of the Hessian

during training does not directly relate to the generalization error, the non-PD
Hessian during the training will cause weight divergence since there will be no
minimum to converge to. In the following, we will derive the conditions under which
the Hessian will be non-PD [3].
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Assume the individual estimator in NCL is a linear combination of nonlinear
functions �:

fi .xn/ D
KX

kD1

wki �ki .xn/:

Examples of estimators in this class are Multi-Layer Perceptions using linear
output nodes, Polynomial Neural Networks, and Radial Basis Functions (RBFs).
When the Hessian matrix is positive definite, all elements on the leading diagonal are
positively valued; therefore, if any element on that diagonal is zero or less, the entire
matrix cannot be positive definite. The diagonal elements in the Hessian matrix can
be written as

@2ei

@w2
i;j

D 2

NX

nD1

�2
i;j .xn/ � 2�

�
1 � 1

M

�2 NX

nD1

�2
i;j .xn/; (6.3)

where wi;j is the j th weight in the output layer of the i th learner. In the case of RBF
networks, �2

i;j is the squared output of the j th basis function in the i th network.
If this element, (6.3), is nonpositive, the entire Hessian matrix is guaranteed to

be nPD. Therefore, we would like the following inequality to hold.

@2ei

w2
i;j

> 0 ) � <

�
M

M � 1

�2

:

Therefore, the bound for the parameter is � 2
h
0;
�

M
M�1

�2�
. When � is varied

beyond this upper bound, the Hessian matrix will be nPD.

6.2.2 Negative Correlation Learning Algorithm

The training algorithm of NCL can be achieved by gradient descent. The detailed
NCL algorithm is given below. We will report some experiments in Subsect. 6.3.4.

Note that NCL is a framework and can be used for any learner aiming to minimize
the mean-square-error (MSE). In this chapter, we take RBF networks as an example
of individual ensemble members.

The output of RBF network is computed as a linear combination of ni basis
functions

fi .x/ D
niX

kD1

wk�k.x/ D ˚T wi ,
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Algorithm 1 Negative Correlation Learning [21, 22]

1: Input: Training Set .xn; yn/N
nD1, the number of predictors required M , the number of iterations

iter, and the parameter �.
2: Output: the trained ensemble function fens

3: for j D 1 to iter do
4: Calculate fens.xn/ D 1

M

PM
iD1 fi .xn/

5: for i D 1 to M do
6: for each weight wi;j in learner i , perform a desired number of gradient descent updates

7: @ei

@wi;j
D 2

PN
nD1.fi .xn/ � yn/

@fi .xn/

@wi;j
� 2�

PN
nD1.fi .xn/ � fens.xn//

�
1 � 1

M

�
@fi .xn/

@wi;j

8: end for
9: end for

where wi D .w1; : : : ; wni /
T denotes the weight vector in the output layer and ˚ D

.�1; : : : ; �ni / is the vector of basis functions. The Gaussian basis functions �k are
defined as

�k.x/ D exp

�kx � �kk2

2�2
k

�
;

where �k and �k denote the center and width of the Gaussian, respectively. The
training of the RBF network is divided into two steps. In the first step, the means
�k are initialized with randomly selected data points from the training set and the
variances �k are determined as the Euclidean distance between �k and the closest
�i .i ¤ k; i 2 f1; : : : ; ni g/. Then in the second step we perform a gradient descent
in the regularized error function (weight decay):

min ei D
NX

nD1

.fi .xn/ � yn/2 � �

NX

nD1

.fi .xn/ � fens.xn//2.

The derivative with respect to wk is:

@ei

@wk

D 2

NX

nD1

.fi .xn/ � yn/
@fi .xn/

@wk

� 2�

NX

nD1

.fi .xn/ � fens.xn//

�
1 � 1

M

�
@fi .xn/

@wk

:

In order to fine-tune the centers and widths, we simultaneously adjust the output
weights and the RBF centers and variances. Taking the derivative with respect to
RBF means �k and variances �2

k we obtain

@ei

@�k

D 2

NX

nD1

.f .xn/ � yn/
@fi .xn/

@�k

� 2�

NX

nD1

.fi .xn/ � fens.xn//

�
1 � 1

M

�
@fi .xn/

@�k

;



6 Ensemble Learning by Negative Correlation Learning 181

with @fi .xn/

@�k
D wk

xn��k

�2
k

�k.xn/ and

@ei

@�k

D 2

NX

nD1

.f .xn/ � yn/
@fi .xn/

@�k

� 2�

NX

nD1

.fi .xn/ � fens.xn//

�
1 � 1

M

�
@fi .xn/

@�k

;

with @fi .xn/

@�k
D wk

kx��kk2

�3
k

�k.xn/. These three derivatives are employed in the

minimization of (6.1) by a scaled conjugate gradient (SCG) descent [28].
The algorithm can be summarized in Algorithm 1.

6.3 Regularized Negatively Correlated Ensemble

In the previous section, we have introduced the negative correlation learning
algorithm. According to the formulation of NCL, it seems that the correlation
term in the cost function acts as the regularization term. However, we observe that
NCL is prone to overfitting the noise in the training set by training the ensemble
as a single estimator and only minimizing the MSE without regularization [18].
Therefore, regularization should be used to address the overfitting problem of NCL.
This section will introduce the RNCL and its Bayesian interpretation.

6.3.1 Negative Correlation with Overfitting

Based on the individual error function, i.e., (6.1), the cost function of the ensemble
can be obtained by averaging these learners’ errors ei . With � D 1, the average error
E of all the networks’ ei is obtained as follows:

E D 1

M

MX

iD1

ei D 1

M

NX

nD1

MX

iD1

n
.fi .xn/ � yn/2 � .fi .xn/ � fens.xn//2

o

D
NX

nD1

.fens.xn/ � yn/2: (6.4)

According to (6.4), NCL is equivalent to training a single estimator fens.xn/

instead of training each individual network separately. It is observed that NCL only
minimizes the empirical training MSE error

PN
nD1.fens.xn/ � yn/2 but does not

regularize the complexity of the ensemble.
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In this case, NCL only reduces the empirical MSE of the ensemble, but it pays
less attention to regularizing the complexity of the ensemble and NCL is prone to
overfitting the noise in the training set. Similarly, setting a zero or small positive �

corresponds to independently training these estimators without regularization and
in this case, NCL is prone to overfitting as well.

NCL can use the penalty coefficient to explicitly alter the emphasis on the
individual MSE and correlation portions of the ensemble and thus alleviate the
overfitting problem to some extent. However, NCL could not totally overcome the
overfitting problem by tuning this parameter without regularization, especially when
dealing with data with nontrivial noise, which will be evidenced by the empirical
work in this chapter.

6.3.2 Overfitting Management by Regularization

In order to improve the generalization ability of NCL, in this subsection we propose
RNCL [8]. Following the traditional strategy to avoid overfitting, a regularization
term is incorporated into the ensemble error function:

Eens D 1

M

NX

nD1

MX

iD1

n
.fi .xn/ � yn/2 � .fi .xn/ � fens.xn//2

o
C

MX

iD1

˛i wT
i wi ; (6.5)

where wi D Œwi;1; : : : ; wi;ni �
T is the weight vector of network i and ni is the total

number of weights in network i .
This regularization term

PM
iD1 ˛i wT

i wi is the weight decay [17] term for the
entire ensemble. In order to train each neural network with its regularization, we
decompose the regularization term to M parts, each part for a network. The error
function for network i can be obtained as follows:

ei D 1

M

NX

nD1

.fi .xn/ � yn/2 � 1

M

NX

nD1

.fi .xn/ � fens.xn//2 C ˛i wT
i wi . (6.6)

Comparing this error function with the cost function of NCL, (6.1), RNCL
imposes a regularization term on every individual neural network and it optimizes
the regularization parameter ˛i instead of the correlation parameter �.

RNCL is implemented by the SCG [28] algorithm. According to (6.6), the
minimization of the error function of the ensemble is achieved by minimizing the
error functions of each individual network. The algorithm can be summarized in
Algorithm 2.
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Algorithm 2 Regularized Negatively Correlated Ensemble [8]

1: Input: Training Set .xn; yn/N
nD1, the number of predictors required M , the number of iterations

iter, and the initial values of parameter ˛i , i D 1; : : : ; M .
2: Output: the trained ensemble function fens

3: for j D 1 to iter do
4: Calculate fens.xn/ D 1

M

PM
iD1 fi .xn/

5: for i D 1 to M do
6: for each weight wi;j in learner i , perform a desired number of gradient descent updates

7: @ei

@wi;j
D 2

M

PN
nD1.fi .xn/ � yn/

@fi .xn/

@wi;j
� 2

M

PN
nD1.fi .xn/ � fens.xn//

�
1 � 1

M

�
@fi .xn/

@wi;j
C

2˛i wi;j

8: end for
9: Parameter Optimization by Bayesian inference.

10: end for

6.3.3 Regularized Parameter Optimization
by Bayesian Inference

This subsection describes the probabilistic interpretation of RNCL, the function
of the regularization term and how to optimize these parameters by Bayesian
inference [8].

6.3.3.1 Bayesian Interpretation

Given the training set D D fxn; yngN
nD1, we follow the standard probabilistic

formulation and assume that the targets are sampled from the model with additive
noise:

yn D fens.xn/ C en D 1

M

MX

iD1

fi .xn/ C en,

where en is an independent sample from some noise process which is further
assumed to be mean-zero Gaussian with variance ˇ�1.

According to the Bayesian theorem, given the hyperparameters � D
Œ�1; �2; : : : ; �M �1 and ˇ, the weigh vector w D �

wT
1 ; : : : ; wT

M

�T
can be obtained

by maximizing the posterior P.wjD/.

P.wjD/ D P.Djw;ˇ/P.wj�/

P.Dj�; ˇ/
; (6.7)

where the probability P.Dj�; ˇ/ is a normalization factor, which is independent
of w.

1�i , i D 1; 2; : : : M; is the inverse variance of the Gaussian distribution of weights for network i .
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The weight vector of each network wi is assumed to have a Gaussian distribution
with zero mean and variance ��1

i . The prior of the weight vector w is obtained as
follows.

P.wj�/ D
Y

M
iD1

	�i

2�

�ni =2

exp

�
�1

2
�i wT

i wi

�
; (6.8)

where ni is the total number of weights in network i .
The traditional Bayesian methods [1, 24, 29] often use an isotropic Gaussian

prior over weights w where the covariance matrix is an identity matrix multiplied
by a parameter, which means these weights in the learner share the same prior.
RNCL extends this by imposing different regularization parameters for different
networks in the ensemble. The prior of RNCL becomes a block-isotropic Gaussian
prior whose covariance matrix is diagonal matrix with M different values. That is,
each network has its own different prior.

Since noise en follows a Gaussian distribution with zero mean and variance ˇ�1,
the likelihood P.Djw;ˇ/ can be written as

P.Djw;ˇ/ D
Y

N
nD1

�
ˇ

2�

�1=2

exp

�
�ˇ

2
e2

n

�
. (6.9)

We omit all constants and normalization factor, and apply Bayesian rules:

P.wjD/ / exp

 
�ˇ

2

NX

nD1

e2
n

!
� exp

 
�

MX

iD1

�i

2
wT

i wi

!
: (6.10)

Taking the negative logarithm, the maximum of the posterior model parameters w
is obtained as the solution to the following optimization problem:

min J1.w/ D 1

2
ˇ

NX

nD1

e2
n C 1

2

MX

iD1

�i wT
i wi . (6.11)

The error function J1 is made up of two terms. The first, 1
2
ˇ
PN

nD1 e2
n, is the sum

of the empirical training errors. The second, 1
2

PM
iD1 �i wT

i wi , is the regularization
term, measuring the amount of square of weights.

Comparing (6.11) with (6.5), RNCL is equivalent to maximization of the
posterior under Bayesian framework. The likelihood P.Djw;ˇ/ corresponds to the
empirical training error term and the prior over weight vector P.wj�/ corresponds
to the regularization term. The regularization term penalizes large weights, causing
the weights to converge to smaller absolute values than they otherwise would.

Based on the above analysis, RNCL is an application of a Bayesian framework
in an ensemble system. Instead of simultaneously optimizing the weigh vector of
ensemble, RNCL manages to train the entire ensemble by decomposing the job into
a set of subtasks, which significantly reduces computational complexity.
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In order to obtain the posterior of the weight vector w, the Taylor expansion of
J1.w/ is employed at point wMP

J1.w/ D J1.wMP/ C 1

2
.w � wMP/T A.w � wMP/; (6.12)

where wMP is the most probable weight vector, and A is the Hessian matrix of J1.w/:

A D rrJ1 D rr
 

MX

iD1

�i

2
wT

i wi C ˇ

2

NX

nD1

e2
n

!
D diag.	/ C ˇrr

 
1

2

NX

nD1

e2
n

!
;

(6.13)

where 	 D
	
�

.1/
1 ; : : : �

.n1/
1 ; �

.1/
2 ; : : : �

.n2/
2 ; : : : ; �

.1/
M ; : : : �

.nM /
M

�T

and the superscript

indicates the number of repetitions of �i .
The integral can be computed as below:
Z

exp.�J1.w//dw D
Z

exp.�J1.wMP/ � 1

2
.w � wMP/T A.w � wMP//dw

D exp.�J1.wMP// � .2�/W=2 det A� 1
2 .

Based on these equations, the approximated posterior of w is obtained as follows:

P.wjD/ D exp.�J1.w//R
exp.�J1.w//dw

D exp
�� 1

2
.w � wMP/T A.w � wMP/

�

.2�/W=2 det A� 1
2

. (6.14)

6.3.3.2 Inference of Regularization Parameters

In order to find the most probable values of � and ˇ, we need to maximize the
posterior of P.�; ˇjD/.

According to the Bayesian rule, the posteriors of � and ˇ are obtained by:

P.�; ˇjD/ D P.D j �; ˇ/P.�; ˇ/

P.D/
/ P.D j �; ˇ/; (6.15)

where flat priors are assumed on the hyperparameters � and ˇ. According to (6.8),
(6.9), and (6.14), the marginal likelihood can be obtained in the following way [13]:

P.Dj�; ˇ/ D P.Djw; ˇ/P.wj�/

P.wjD/

�
.2�/W=2jAj� 1

2
Q

M
iD1

�
�i

2�

�ni =2
	

ˇ

2�

�N=2

exp .�J1.w//

exp.� 1
2
.w � wMP/T A.w � wMP//

:
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By using the Gaussian approximation J1.w/ � J1.wMP/ C 1
2
.w � wMP/T A.w �

wMP/ and the relation W D P
ni , where W is the total number of weights in the

ensemble,

P.Dj�; ˇ/ � .2�/W=2jAj� 1
2

Y
M
iD1

	 �i

2�

�ni =2
�

ˇ

2�

�N=2

exp .�J1.wMP//

�
�

1

2�

�N=2

sQM
iD1 �

ni
i ˇN

det A
exp.�J1.wMP//

/
sQM

iD1 �
ni
i ˇN

det A
exp.�J1.wMP//: (6.16)

In order to maximize the probability P.Dj�; ˇ/, a negative logarithm is applied:

J2 D 1

2

MX

iD1

�i wT
i;MPwi;MPC1

2
ˇ

NX

nD1

e2
n;MP�1

2

MX

iD1

ni log �i �1

2
N log ˇC1

2
log det A;

(6.17)

where the subscript MP indicates the most probable values.
The update rule for ˛i D �i =ˇ can be obtained from the derivation of J2. In order

to apply a partial derivative to J2, we need to apply partial derivative to log det A.
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The gradient of log P.Dj�; ˇ/ toward �i and ˇ are:
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Setting the gradient to zero, the optimal �i and ˇ can be obtained:
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Combining (6.18) and (6.19) and the relation ˛i D �i =ˇ, we obtain the following
equation:
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In the following, we reformulate the optimization problem, (6.17), in �i and ˇ

into a scalar optimization problem in ˛i D �i =ˇ. Therefore, we firstly replace that
optimization problem by an optimization problem in ˇ and ˛i by the relation �i D
ˇ˛i . As (6.20) also holds in the scalar optimization, we search for the optimum only
along this curve in the (˛i and ˇ) space.

By elimination of ˇ from (6.20), the minimization problem from J2 is obtained
in a straightforward way:

J3 D
WX

j D1

log

�
1 C �j

Ǫj
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where j 2 ni indicates the range
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The RNCL learning is conducted in an iterative manner. In each iteration, the
ensemble is firstly trained by the SCG algorithm with the previous regularization
parameters ˛i , followed by the estimation of new most probable ˛new

i values
by (6.21), and then we incorporate the new ˛new

i in the ensemble. The learning
algorithm repeats the process, until some suitable convergence criteria have been
satisfied.
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6.3.4 Computational Examples

In this subsection, RBF networks are used as the individual ensemble members. The
number of hidden nodes is randomly selected but restricted in the range 3–12. The
initial centers, widths for individual NNs are randomly selected. The details of the
specification including the derivations of error with respect to centers and widths of
a RBF network are presented in Subsect. 6.2.2.

We employ the SCG algorithm to train NCL and RNCL. Twenty five RBF
networks are employed in the ensemble. The input attributes of data sets are scaled
to mean zero and unit variance as the preprocessing procedure.

As the first experiment, we compare RNCL, NCL�D1, and NCLCV on the
sinc data set. Figure 6.1a and b show the output of RNCL and NCLCV on the
sinc function with different noise levels. In the noise-free case, both RNCL and
NCLCV perfectly approximate the actual function, although there is a little misfit
for NCLCV near the tail. When the noise level increases, NCLCV, although it selects
the parameter by cross validation, overfits the noise in the training set, while RNCL
is more robust to noise than NCL, as indicated by Fig. 6.1b.

In order to explore the behavior of RNCL, NCLCV, and NCL�=1 with different
noise levels, we add mean zero and different levels of Gaussian noise to sinc.
Figure 6.1c shows the average results of 100 runs.

For the sinc data set, when the noise level (variance) is small, RNCL and NCLCV

perform similarly and their performances are better than NCL�=1. When the noise
level becomes greater, MSE of RNCL increases slower than that of NCLCV and
NCL�=1 and NCLCV performs a little better than NCL�=1

In Fig. 6.2, we have illustrated the mean of regularization parameters ˛ obtained
in RNCL versus different noise levels and the parameter � selected by NCLCV.

Figure 6.2a reports the mean ˛ value2 obtained in RNCL vs. different noise levels
on sinc and Friedman data. The results are based on 100 runs. When the noise level
increases, the learned model will become more complex to fit the data and in this
situation, large regularization is preferred to control the complexity in the model.
Bayesian parameter selection in RNCL does reflect this tendency when the noise
level increases.

Figure 6.2b reports the selected � parameter in NCLCV and the performance
of RNCL. It is observed that NCLCV could not beat RNCL even if it uses the
optimal correlation parameter �. Figures 6.1 and 6.2 confirm that NCLCV could
not overcome the overfitting problem by only tuning the � parameter for regression
problems.

In the following, we demonstrate the application of RNCL on classification
problems. Firstly, we apply RNCL and NCLCV to two synthetic data sets in two
dimensions in order to illustrate graphically the decision boundary.

2Since we optimize ˛i for each individual networks in the ensemble, in this figure we only show
the mean ˛i value.
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Fig. 6.1 Comparison of RNCL and NCL on sinc data sets. In (a) and (b), the lines in green
(dashed), red (dotted), and black (solid) are obtained by RNCL, NCLCV, and the noise-free
function, respectively. Part figure (c) shows mean squared error (MSE) of RNCL (green solid),
NCL�=1 (blue crossed), and NCLCV (black triangled) on sinc with different noise levels. (a) Sinc
free of noise. (b) Sinc with Gaussian noise (mean 0, variance 0.2). (c) Sinc with different noise
levels (For better interpretation of the figure, the reader is referred to the web version of this article.)

These two data sets are (1) synth is generated from mixtures of two Gaussians
by [30], and (2) Bumpy comes from two equal Gaussians but being rotated by 90ı,
quadratic boundaries are required.

In Fig. 6.3, we present a comparison of RNCL and NCLCV. In the case of Synth,
RNCL disregards the outliers in the training points and produces a smooth boundary,
while NCLCV generates a corner in the decision boundary due to several outliers.
In the case of Bumpy, the noise level is greater because of these overlapping points.
NCLCV does not generalize very well and produces a little twisty boundary. RNCL
generates a quadratic boundary as expected.

In order to check the behaviors of RNCL and NCLCV on noisy classification
problems, we conduct similar noise experiments as the regression problems. In the
experiments, we select one data set, Gaussian. Gaussian is a synthetic two class
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Fig. 6.3 Comparison of RNCL and NCLCV on two synthetic classification data sets. Two classes
are shown as crosses and dots. The separating lines were obtained by projecting test data over a
grid. The lines in wide and thin were obtained by RNCL and NCLCV, respectively. (a) Synth. (b)
Bumpy (For better interpretation of the figure, the reader is referred to the web version of this
article.)

two-dimensional data set which is sampled from a mixture of four Gaussians. Each
class is associated with two of the Gaussians so that the optimal decision boundary
is nonlinear.

To change the noise level, we randomly select different percentages of data points
and reverse their labels. We run the algorithms 100 times and report the average
results in Fig. 6.4. Figure 6.4a visualizes the decision boundaries of RNCL and
NCLCV with 20% noise points.
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Although the noise level is high, RNCL produces a smooth boundary. NCLCV does
not generalize well. We also plot the curve, Fig. 6.4b, of classification error versus
noise level for the Gaussian data set. In this figure, RNCL is a little better in the
beginning, but as the noise level increases, RNCL significantly outperforms NCLCV

and NCL�=1.

6.4 Multi-objective Ensemble Learning

Most ensemble learning algorithms train the base learners independently or sequen-
tially, so the advantages of interaction and cooperation among the base learner are
not exploited. NCL has shown that ensemble methods benefits from considering
the cooperation among the base learners. This approach opens a new research area
where the design and training of the base learners can be interdependent. Although
NCL performs well for a broad range of practical applications by considering the
cooperation in the ensemble, it is not regularized, which leads to overfitting, and
the weighting coefficient, which controls the trade-off between empirical error and
correlation, needs to be tuned.

In order to address these problems, the previous section introduced a regulariza-
tion term to the error function. This section will describe a multi-objective approach
to balance the error, correlation, and regularization terms in the error function [9].
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6.4.1 Trade-off Among Diversity, Accuracy, and Regularization

Based on the previous sections, the trade-off among the three terms, i.e., the
empirical training error, correlation term, and the regularization, is crucial for the
generalization performance of an ensemble. Poor generalization occurs if the trade-
off is unbalanced. For example, a small regularization term may lead to overfitting
with noise data sets and a large regularization may seriously bias the learning
outcome. The situation is applicable to the correlation term as well.

One approach to balance the trade-off is to assign coefficient parameters to
these terms and choose the appropriate coefficients. The usual way to choose the
coefficients is to train several networks with different values of these coefficients and
estimate the generalization error for each network and then choose the coefficients
that minimize the estimated generalization error.

Evolutionary multi-objective algorithms are well suited to search the optimal
trade-off among different objectives by parallelizing the searching using a pop-
ulation of networks and biasing toward the Pareto front and at the same time
maintaining population diversity to obtain as many diverse solutions as possible
[4]. These properties are especially important in ensemble design.

This chapter introduces multi-objective regularized negative correlation learning
(MRNCL) algorithm, which implements the RNCL algorithm by an evolutionary
multi-objective algorithm. MRNCL [9] involves minimization of the three terms:
empirical training error term, correlation penalty term, and the regularization term.
MRNCL algorithm not only addresses the issues concerned with NCL but also
provides the following advantages: (1) Being a multi-objective algorithm, the
approach is able to produce a diverse ensemble. Some individuals are good at
minimizing the training error; some pay more attention to cooperation and the others
manage to control the complexity. (2) The parameters of individual network can be
effectively obtained in the evolutionary multi-objective algorithm. (3) Due to the
regularization term in MRNCL, the obtained ensemble is regularized and is more
robust with respect to noise. (4) There is no need to weigh the different objectives
by optimizing the coefficient parameters.

According to (6.6), MRNCL defines the following three objectives.

• Objective of Performance
PN

nD1.fi .xn/ � yn/2

This objective measures the empirical mean square error based on the training
set.

• Objective of Correlation �PN
nD1.fi .xn/ � fens.xn//2

This correlation term measures the amount of variability among the ensemble
members and this term can also be treated as the diversity measure [19]. From
both theoretical and experimental results it has been shown that, if the individual
networks in an ensemble are unbiased, the most effective combination of them
occurs when the errors of the individual networks are negatively correlated. This
objective encourages individual networks to negatively correlate their errors and
thus helps to generate a diverse ensemble.
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• Objective of Regularization wT
i wi D P

j w2
j

Based on the regularization theory [32], the weight decay term [17] is
employed to punish large weights. The weight decay term causes the weights
to converge to smaller absolute values than they otherwise would. The reg-
ularization term helps the generalization ability of a neural network because
large weights can hurt generalization in two different ways: (a) excessively large
weights leading to hidden nodes can cause the output function to be too rough,
possibly with near discontinuities. Excessively large weights leading to output
nodes can cause wild outputs far beyond the range of the data if the output
activation function is not bounded to the same range as the data. (b) Large
weights can cause excessive variance of the output [12]. The regularization term
is beneficial to NCL since large weights are usually connected with near linear
dependence among groups of nodes in the network, and NCL would seem to
potentiate the appearance of large weights in the ensemble.

6.4.2 Trade-off Optimization by Multi-objective Learning

To optimize the trade-off among these three terms, the evolutionary neural network
approach is used. A RBF network is used as the component network for this purpose.
The structure of RBF networks is similar to that described in Subsect. 6.2.2.

We use an RBF network as the base learner because of the following advantages.
(1) Once the centers and the widths of the basis functions have been fixed, the
optimal output weights w can be efficiently computed in a closed form, which
means the performance mostly depends on the selection of basis functions. (2) It
is reasonable to define crossover and mutation operators in structural-evolving RBF
network by tuning these basis functions.

Based on the above reasons, the crossover operator and mutation operator for
RBF networks are described as follows.

• Crossover Operator
As the performance of a RBF network mostly depends on the basis functions,

i.e., the centers and the widths, the crossover operator is defined to exchange the
basis functions of two RBF networks. Many crossover techniques exist in the
literature, such as one-point crossover, two-point crossover, and “cut and splice”
crossover. In a RBF network ensemble, as different networks may have different
numbers of basis functions, the “cut and splice” approach has been adopted by
randomly choosing separate crossover points for two RBF networks and swap
their basis functions beyond those points.

• Mutation Operator
This algorithm defines two structural mutation operators for RBF networks.

1. Deleting one basis function. Randomly select one basis function and delete it.
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2. Adding one basis function. The center of the new basis function is determined
by a randomly selected data point from the training set. Then, the width of
the basis function is chosen as the minimal distance from other centers in this
RBF network.

As the crossover and mutation operations may not generate the optimal combi-
nation of basis functions, afterwards, we simultaneously adjust the output weights,
the RBF centers, and widths. This procedure is also called parametric mutation [36],
which only modifies the parameters of the network without modifying its topology.
This parametric mutation is performed for a few iterations (in our experiments, only
one SCG update is employed).

In this chapter, nondominated sorting with fitness sharing [31] and rank-based
fitness assignment were used. Nondominated sorting is based on layers of Pareto
front, which ranks the individuals in the population. The diversity of population is
maintained by a niching method.

The nondominated sorting algorithm consists of two stages: One is to obtain
the nondominated fronts of different layers and every individual of these fronts is
assigned an equal dummy fitness. The algorithm used for obtaining the nondomi-
nated set of solutions compares the individuals pairwise and marks these individuals,
which are dominated by at least one member of the population, as dominated. The
second is that the members of every front share their fitness [11] with the constraint
that none of the members of a front gets a higher fitness than any of the members of
the previous front.

Since the dummy fitness assigned by nondominated sorting is raw, sometimes the
range of the dummy fitness is too large, leading to the situation that some networks
reproduce too rapidly, taking over the population too quickly, and preventing the
evolutionary algorithm from searching other areas of the solution space. Fitness
scaling is used to map an arbitrary fitness range into an appropriate range.

The algorithm employs rank-based fitness assignment to reassign the fitness
to the networks because rank-based fitness assignment behaves in a more robust
manner than proportional fitness assignment. In the rank-based fitness assignment,
the population is sorted according to the raw fitness values. The fitness assigned to
each individual depends only on its position in the individual’s ranking and not on
the actual raw fitness value.

We use a linear rank-based fitness assignment, where the fitness value for an
individual is calculated as:

fitness.Pos/ D 2 � SP C 2.SP � 1/
Pos � 1

M � 1
; (6.22)

where M is the number of individuals in the population. Pos is the position of an
individual in this population (least fit individual has Pos D 1, the fittest individual
Pos D M ) and SP is the selective pressure. Linear ranking allows values of the
parameter SP in Œ1:0; 2:0�. Our algorithm adopts 1.5 as the selective pressure.
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Algorithm 3 Multi-objective Regularized Negatively Correlated Ensemble [9]

1: Input: Training Set .xn; yn/N
nD1, the number of population M , the number of iterations iter.

2: Output: the trained ensemble function fens

3: Generate an initial RBF network population.3

4: Train the initial RBF network population and recode the three objective values of each network.
5: Apply nondominated sorting with rank-based fitness assignment algorithm to obtain the rank-

based fitness.
6: for i D 1 to iter do
7: Perform a desired number of crossover operations.4

8: Perform a desired number of mutation operations.
9: Apply nondominated sorting algorithm and obtain the rank-based fitness for the new

population.
10: end for
11: Combine these classifiers to form the ensemble.

The details about MRNCL are summarized in Algorithm 3.
Note that in the crossover and mutation operations, the comparison of the child

network with the parent network is conducted as follows.

1. Evaluate the three objective values of the child network.
2. Include the child network into the population, then apply nondominant sorting

with a fitness sharing algorithm to obtain the raw fitness values5 of the child
network and the parent network.

3. Compare the raw fitness values and keep the better one.

To determine the time to stop evolution, we selected three threshold values (t1 D
t2 D t3 D 10�3 in this paper) and compare the thresholds with the differences
between the old minimal objective values with the new minimal objective values. If
all the differences are lower than the thresholds, the algorithm will be terminated.
The maximal number of generations is 200.

3To generate an initial RBF network population: Generate an initial population of M RBF
Networks, the number of hidden nodes K for each network is specified randomly restricted by
the maximal number of hidden nodes. The centers �k are initialized with randomly selected data
points from the training set and the width �k are determined as the Euclidian distance between �k

and the closest �j .j ¤ k; j 2 f1; : : : ; Kg/.
4Choose parents based on roulette wheel selection algorithm and perform crossover. Then perform
a few number of updates for weights, centers, and widths. Compare the children with parents and
keep the better ones.
5The raw fitness values depend on their ranked layers (fronts) in the population. If they are in the
same layer (front), e.g., they are both nondominant solutions, the one in the less-crowded area will
receive greater fitness according to the fitness sharing algorithm.
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Fig. 6.5 Comparison of MRNCL, MNCL, and MoNN on two synthetic classification data sets.
Two classes are shown as crosses and dots. The separating lines were obtained by projecting test
data over a grid. (a) Synth. (b) Bumpy

6.4.3 Computational Examples

In the experiments, RBF networks are used as the individual classifiers. The number
of hidden nodes is randomly selected but restricted in the range of 5–15. The
parameters in the evolutionary algorithm are set to: the population size M (100),
the number of crossovers in one generation 20, the number of mutations in one
generation 10, the number of generations (200), the parameter of fitness sharing
�share (0.2). These parameters are chosen after some preliminary experiments. They
are not meant to be optimal.

In order to compare our algorithm with previous work on multi-objective
ensemble learning, we have obtained the source code from Dr. Yaochu Jin and used
the same parameters as their algorithm in [16]. This algorithm evolves multilayer
perception (MLP) using two objectives (training error and regularization, i.e.,
number of connections in MLP) and we name the algorithm as multi-objective
neural network (MoNN) in this section.

In the experiments, we restrict the minimal hidden nodes of RBF networks
as three in MRNCL and multi-objective negative correlation learning (MNCL) to
discourage improperly simple networks.

As the first experiment, we demonstrate the results of MRNCL on two synthetic
data sets in two dimensions in order to illustrate graphically the decision boundaries.

These two data sets are synth and bumpy, as described in Subsect. 6.3.4.
In Fig. 6.5, we present a comparison of MRNCL, MNCL, and MoNN. We

observe that MRNCL gives more accurate results in these two cases. In the cases of
Synth and Bumpy, MRNCL produces smooth boundaries and disregards the outliers
in the training sets. In the case of Synth, MoNN tries to use a near–linear boundary
to separate the nonlinear data set consisted of four Gaussians. The generated model
is overregularized and thus degrades performance. In the case of Bumpy, although



6 Ensemble Learning by Negative Correlation Learning 197

Fig. 6.6 Illustration of the mean value of these three objectives in different generations. The
generation starts from the dark points to the light points. The gray scale indicates generations.
(a) Synth. (b) Bumpy

the decision boundary of MoNN is smooth, it does not generate an appropriate
boundary. (The optimal boundary is a quadratic one.) Since the noise level is
large because of these overlapping points in the case of Bumpy, MNCL does not
generalize well and produces the twisty boundary. In the case of Synth, MNCL
concentrates on several outliers and generates a corner in the boundary.

Figure 6.6 illustrates the mean values of these three objectives in different
generations. According to these figures, MRNCL algorithm tries to minimize the
three objectives. However, the empirical training error is negatively correlated with
the correlation term. Instead of minimizing the three objectives simultaneously,
MRNCL seeks to find a good balance between the two negatively correlated terms
(reduce one will increase another), i.e., training error and correlation term, and
MRNCL always minimizes the third objective, the regularization term, in the
evolutionary algorithm.

The 3D view of the last population is illustrated in Fig. 6.7. The negative corre-
lation between the empirical error term and the correlation term6 was confirmed by
these figures. The final population distributes a good trade-off between these three
objectives for all the data sets. According to this figure, we also notice that almost
80–90% of the solutions in the last generation are nondominated solutions.

Instead of combining all individual members in the population, ensemble
selection and pruning algorithms can be used to generate compact yet powerful
ensembles. Chen et al. [6] have proposed a probabilistic ensemble pruning algorithm
using expectation propagation which can get an estimate of the leave-one-out (LOO)
error. The LOO error is used together with Bayesian evidence for ensemble pruning.

6Negative correlation was used to indicate the correlation between on individual’s error with the
error of the rest of the ensemble. By minimizing the correlation term, i.e., �PN

nD1.fi .xn/ �
fens.xn//2 , the individual in the population will be more diverse, i.e., the term

PN
nD1.fi .xn/ �

fens.xn//2 increases. Therefore, the average training error term
PN

nD1.fi .xn/ � yn/2 will increase.
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Fig. 6.7 Three-dimensional view of the last population with three objectives: training error,
regularization, and correlation for two synthetic classification data sets. (a) Synth. (b) Bumpy

6.5 Summary

This chapter introduces NCL and demonstrates that NCL is prone to overfitting
the noise. To overcome the shortcomings of NCL, RNCL was proposed, which
incorporates an additional regularization term into NCL. Moreover, the Bayesian
interpretation of RNCL was given and an algorithm to optimize the regularization
parameter by Bayesian inference was presented.

This chapter also investigates RNCL from a multi-objective optimization point
of view. The resulting algorithm can effectively search the best trade-off among
three terms, i.e., empirical error, error correlation and regularization. To effectively
evolve these networks, the crossover and mutation operators are defined to vary the
structure of RBF networks. The nondominated sorting algorithm with fitness sharing
and linear rank-based fitness assignment were employed to promote diversity in this
algorithm.

The numerical results and visualization on some data sets have demonstrated that
regularization is an important factor in ensemble construction, especially when the
noise is nontrivial in data sets.

Compared with RNCL by gradient descent with Bayesian inference, the multi-
objective implementation often achieves a little better performance by considering
an additional weighting coefficient of the correlation term. The potential advantages
of the multi-objective approach include: It enables us to observe the interaction and
trade-off among different objectives; and it enables us to add or remove an objective
easily without changing the overall algorithm. However, the better performance
comes with the price, i.e., more computational time to train MRNCL.

In practice, whether to use RNCL or MRNCL depends on the application
and users’ specification. If users would like to observe the interaction and trade-
off among different objectives and easily modify the code without changing the
overall algorithm, MRNCL is more appropriate. If they pay more attention to the
computational resource and prefer the explicit combination of coefficients, gradient
descent-based RNCL with Bayesian inference is a better choice.
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6.6 Bibliographical and Historical Remarks

Negative correlation learning [21, 22] is a successful neural network ensemble
learning algorithm that has been researched for decades. In 2001, McKay et al. [25]
presented an alternative anti-correlation measure, root-quartic negative correlation
learning (RTQRT-NCL), and used the anti-correlation in training neural network
ensembles. The empirical results showed significant improvements for both neural
networks and genetic programming learning machines. They also derived a theoret-
ical explanation of the improved performance of RTQRT-NCL in larger ensembles.

Later, Islam et al. [15] took a constructive approach to building the ensemble,
starting from a small group of networks with a minimal architecture. The networks
are all partially trained using NCL. The approach can automatically determine
weights, network topologies, and ensemble membership. In the following work,
Brown et al. [2] formalized NCL, providing a statistical interpretation of its success.
Furthermore, for estimators that are linear combinations of other functions, they
derive an upper bound on the penalty coefficient, based on properties of the Hessian
matrix. Then, Chandra et al. [4,5] proposed a diverse and accurate ensemble learning
algorithm, combining evolving neural network and multi-objective algorithm.

In 2007, Chen et al. [7] proposed to incorporate bootstrapping of data, random
feature subspaces [14] and evolutionary algorithms with NCL to automatically
design accurate and diverse ensembles. The idea promotes the diversity within
the ensemble and simultaneously emphasizes the accuracy and cooperation in the
ensemble. Dam et al. [10] applied the NCL algorithm to train the neural network
ensemble in learning classifier systems, where NCL is shown to improve the
generalization of the ensemble.

In [8, 9], Chen and Yao propose the RNCL algorithm and multi-objective reg-
ularized negative correlation learning algorithms. The results have shown superior
performance with the regularization term when dealing with noisy data. In addition
to these development of negatively correlated ensembles, Wang et al. [33–35]
have investigated the application of negatively correlated ensembles to imbalanced
data, and Minku et al. [26, 27] have investigated the use of negative correlation in
incremental learning, and discussed its strong and weak points to incremental and
online learning.
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Chapter 7
Ensemble Nyström

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar

7.1 Introduction

A common problem in many areas of large-scale machine learning involves
manipulation of a large matrix. This matrix may be a kernel matrix arising in
Support Vector Machines [9, 15], Kernel Principal Component Analysis [47], or
manifold learning [43,51]. Large matrices also naturally arise in other applications,
e.g., clustering, collaborative filtering, matrix completion, and robust PCA. For
these large-scale problems, the number of matrix entries can easily be in the order of
billions or more, making them hard to process or even store. An attractive solution
to this problem involves the Nyström method, in which one samples a small number
of columns from the original matrix and generates its low-rank approximation
using the sampled columns [53]. The accuracy of the Nyström method depends
on the number columns sampled from the original matrix. The larger the number of
samples, the higher the accuracy but slower the method.

In the Nyström method, one needs to perform Singular Value Decomposition
(SVD) on a l � l matrix where l is the number of columns sampled from the
original matrix. This SVD operation is typically carried out on a single machine.
Thus, the maximum value of l used for an application is limited by the capacity
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of the machine. That is why in practice, one restricts l to be less than 20 K or
30 K, even when the size of matrix is in millions. This restricts the accuracy of
the Nyström method in very large-scale settings.

This chapter describes a family of algorithms based on mixtures of Nyström
approximations called, Ensemble Nyström algorithms, which yields more accurate
low-rank approximations than the standard Nyström method. The core idea of
Ensemble Nyström is to sample many subsets of columns from the original matrix,
each containing a relatively small number of columns. Then, Nyström method is
performed on each group independently in parallel, and the results are combined
yielding high accuracy. These ensemble algorithms naturally fit within distributed
computing environments where their computational costs are roughly the same as
that of the standard Nyström method. This issue is of great practical significance
given the prevalence of distributed computing frameworks to handle large-scale
learning problems. Several variants of these algorithms are described, including
one based on simple averaging of p Nyström solutions, an exponential weighting
method, and a regression based method which consists of estimating the mixture
parameters using a few sampled columns.

In Sect. 7.2, we first introduce the notation and basic concepts of low-rank matrix
approximation. The standard Nyström method is also described. Then, we present
a number of Ensemble Nyström algorithms in Subsect. 7.2.2. In many applications,
one needs inverse of a large matrix, e.g., SVM and Gaussian Processes. Deriving
approximate inverse using the standard Nyström method is easy but not so for
the Ensemble Nyström. We further show in Subsect. 7.2.3 how one can efficiently
use Woodbury’s approximation with Ensemble Nyström to generate approximate
inverses.

Another interesting aspect of the Ensemble Nyström methods is their theoretical
properties that give explicit bounds for the reconstruction error for both the
Frobenius norm and the spectral norm. In Subsect. 7.3, we give a derivation of
these bounds. These arise by developing a different bound for the standard Nyström
method as used in practice, i.e., using uniform random sampling of columns without
replacement. These novel generalization bounds guarantee a better convergence rate
for Ensemble Nyström algorithms in comparison to the standard Nyström method.

Section 7.4 demonstrates the results from Ensemble Nyström algorithms on
multiple datasets. A comprehensive comparison against other methods shows clear
performance gains over the standard Nyström method. Section 7.4.2 describes a
large-scale experiment with 1 M points leading to a matrix of size 1 M � 1 M. This
is a huge dense matrix, containing 1 trillion entries and its explicit storage would
require 4 TB space. We show that sampling-based methods can easily handle such
matrices and the proposed Ensemble Nyström outperforms other state-of-the-art
methods for a fixed computational budget.

To conclude, we provide a summary of the chapter and discuss several open
questions in Sect. 7.5. Further, related work is mentioned in Sect. 7.6.
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7.2 Algorithms

Let T 2 R
a�b be an arbitrary matrix. We define T.j /; j D 1 : : : b, as the j th

column vector of T, T.i/; i D 1 : : : a, as the i th row vector of T and k�k the l2
norm of a vector. Furthermore, T.i Wj / refers to the i th through j th columns of T
and T.i Wj / refers to the i th through j th rows of T. If rank.T/ D r , we can write
the thin SVD of this matrix as T D UT˙T V>

T where ˙T 2 R
r�r is diagonal

and contains the singular values of T sorted in decreasing order and UT 2 R
a�r

and VT 2 R
b�r have orthogonal columns that contain the left and right singular

vectors of T corresponding to its singular values. We denote by Tk the “best” rank-
k approximation to T, i.e., Tk Darg minV2Ra�b ;rank.V/DkkT�Vk� , where � 2 f2; F g
and k�k2 denotes the spectral norm and k�kF the Frobenius norm of a matrix. We
can describe this matrix in terms of its SVD as Tk D UT;k˙T;kV>

T;k where ˙T;k

is a diagonal matrix of the top k singular values of T and UT;k and VT;k are the
associated left and right singular vectors.

Now let K 2 R
n�n be a symmetric positive semidefinite (SPSD) kernel or Gram

matrix with rank.K/ D r � n, i.e., a symmetric matrix for which there exists an
X 2 R

N�n such that K D X>X. We will write the SVD of K as K D U˙U>,
where the columns of U are orthogonal and ˙ D diag.�1; : : : ; �r / is diagonal. The

pseudo-inverse of K is defined as KC D Pr
tD1 ��1

t U.t/U.t/>, and KC D K�1 when

K is full rank. For k < r , Kk D Pk
tD1 �tU.t/U.t/> D Uk˙kU>

k is the “best” rank-
k approximation to K, i.e., Kk D arg minK02Rn�n;rank.K0/DkkK � K0k�2f2;F g, with

kK � Kkk2 D �kC1 and kK � KkkF D
qPr

tDkC1 �2t [23].

We will be focusing on generating an approximation eK of K based on a sample
of l � n of its columns. We assume that l columns are sampled from K uniformly
without replacement. Let C denote the n � l matrix formed by these columns and
W the l � l matrix consisting of the intersection of these l columns with the
corresponding l rows of K. Note that W is SPSD since K is SPSD. Without loss
of generality, the columns and rows of K can be rearranged based on this sampling
so that K and C can be written as follows:

K D
�

W K>
21

K21 K22

�

and C D
�

W
K21

�

: (7.1)

7.2.1 Standard Nyström Method

The Nyström method uses W and C from (7.1) to approximate K. Assuming
a uniform sampling of the columns, the Nyström method generates a rank-k
approximation eK of K for k < n defined by:

eKnys
k D CWC

k C> � K; (7.2)
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where Wk is the best k-rank approximation of W with respect to the spectral or
Frobenius norm and WC

k denotes the pseudo-inverse of Wk . The Nyström method
thus approximates the top k singular values (˙k) and singular vectors (Uk) of K as:

ėnys
k D

�n

l

�
˙W;k and eUnys

k D
r
l

n
CUW;k˙

C
W;k; (7.3)

where ˙W;k contains the top k singular values of W, and UW;k contains the
corresponding singular vectors. When k D l (or more generally, whenever k �
rank.C/), this approximation perfectly reconstructs three blocks of K, and K22 is
approximated by the Schur Complement of W in K:

eKnys
l D CWCC> D

�
W K>

21

K21 K21WCK21

�

: (7.4)

The time complexity of SVD on W to get top k singular values and vectors
is O.kl2/ and matrix multiplication with C takes O.kln/. Hence, the total
computational complexity of the Nyström approximation is O.kln/ since n 	 l .

7.2.2 Ensemble Nyström

In this section, we discuss a meta algorithm called the Ensemble Nyström algorithm.
We treat each approximation generated by the Nyström method for a sample of
l columns as an expert and combine p � 1 such experts to derive an improved
hypothesis, typically more accurate than any of the original experts.

The learning set-up is defined as follows. We assume a fixed kernel function
KW X �X !R that can be used to generate the entries of a kernel matrix K. The
learner receives a set S of lp columns randomly selected from matrix K uniformly
without replacement. S is decomposed into p subsets S1;: : :; Sp. Each subset Sr ,
r 2 Œ1; p�, contains l columns and is used to define a rank-k Nyström approximation
eKr . Dropping the rank subscript k in favor of the sample index r , eKr can be written
as eKr DCrWC

r C>
r , where Cr and Wr denote the matrices formed from the columns

of Sr and WC
r is the pseudo-inverse of the rank-k approximation of Wr . The learner

further receives a sample V of s columns used to determine the weight �r 2 R

attributed to each expert eKr . Thus, the general form of the approximation, Kens,
generated by the Ensemble Nyström algorithm, with k � rank.Kens/ � pk, is

eKens D
pX

rD1
�reKr (7.5)

D

2

6
4

C1

: : :

Cp

3

7
5

2

6
4

�1WC
1

: : :

�pWC
p

3

7
5

2

6
4

C1

: : :

Cp

3

7
5

>

: (7.6)
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As noted by [36], (7.6) provides an alternative description of the Ensemble Nyström
method as a block diagonal approximation of WC

ens, where Wens is the lp� lp SPSD
matrix associated with the lp sampled columns.

The mixture weights �r can be defined in many ways. The most straightforward
choice consists of assigning equal weight to each expert, �r D 1=p, r 2 Œ1; p�.
This choice does not require the additional sample V , but it ignores the relative
quality of each Nyström approximation. Nevertheless, this simple uniform method
already generates a solution superior to any one of the approximations eKr used in
the combination, as we shall see in the experimental section.

Another method, the exponential weight method, consists of measuring the
reconstruction error O�r of each expert eKr over the validation sample V and defining
the mixture weight as �r D exp.��O�r /=Z, where � > 0 is a parameter of the
algorithm and Z a normalization factor ensuring that the vector � D .�1; : : : ; �p/

belongs to the simplex � of R
p: � D ˚

� 2 R
pW � � 0 ^ Pp

rD1 �r D 1
�
. The

choice of the mixture weights here is similar to that used in the Weighted Majority
algorithm [38]. Let KV denote the matrix formed by using the samples from V

as its columns and let eKV
r denote the submatrix of eKr containing the columns

corresponding to the columns in V . The reconstruction error O�r D �
�eKV

r � KV

�
� can

be directly computed from these matrices.
A more general class of methods consists of using the sample V to train

the mixture weights �r to optimize a regression objective function such as the
following:

min
�

	k�k22 C
�
�
�
�
�

pX

rD1
�reKV

r � KV

�
�
�
�
�

2

F

; (7.7)

where KV denotes the matrix formed by the columns of the samples V and 	> 0.
This can be viewed as a ridge regression objective function and admits a closed form
solution. We will refer to this method as the ridge regression method. Note that to
ensure that the resulting matrix is SPSD for use in subsequent kernel-based algo-
rithms, the optimization problem must be augmented with standard nonnegativity
constraints. This is not necessary, however, for reducing the reconstruction error, as
in our experiments. Also, clearly, a variety of other regression algorithms such as
Lasso can be used here instead.

The total complexity of the Ensemble Nyström algorithm isO.pl3CplknCC�/,
where C� is the cost of computing the mixture weights, �, used to combine the p
Nyström approximations. In general, the cubic term dominates the complexity since
the mixture weights can be computed in constant time for the uniform method, in
O.psn/ for the exponential weight method, or in O.p3 Cpls/ for the ridge re-
gression method. Furthermore, although the Ensemble Nyström algorithm requires
p times more space and CPU cycles than the standard Nyström method, these
additional requirements are quite reasonable in practice. The space requirement is
still manageable for even large-scale applications given that p is typically O(1) and
l is usually a very small percentage of n (see Sect. 7.4 for further details). In terms
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of CPU requirements, we note that this algorithm can be easily parallelized, as all
p experts can be computed simultaneously. Thus, with a cluster of p machines, the
running time complexity of this algorithm is nearly equal to that of the standard
Nyström algorithm with l samples.

7.2.3 Ensemble Woodbury Approximation

In many applications, one needs to invert a matrix .K C 	I/, where 	 is a positive
scalar and I is the identity matrix. The Woodbury approximation is a useful tool
to use alongside low-rank approximations to efficiently (and approximately) invert
kernel matrices. We are able to apply the Woodbury approximation since the
Nyström method represents eK as the product of low-rank matrices. This is clear
from the definition of the Woodbury approximation:

.A C BCd/�1 D A�1 � A�1B
�
C�1 C dA�1B

	�1
dA�1; (7.8)

where A D 	I and eK D BCd in the context of the Nyström method. In contrast,
the Ensemble Nyström method represents eK as the sum of products of low-rank
matrices, where each of the p terms corresponds to a base learner. Hence, we cannot
directly apply the Woodbury approximation as presented above. There is, however,
a natural extension of the Woodbury approximation in this setting, which at the
simplest level involves running the approximation p times. Starting with p base
learners with their associated weights, i.e., eKr and �r for r 2 Œ1; p�, and defining
T0 D 	I, we perform the following series of calculations:

T�1
1 D �

T0 C �1eK1

	�1

T�1
2 D �

T1 C �2eK2

	�1

� � �
T�1
p D �

Tp�1 C �peKp

	�1
:

To compute T�1
1 , notice that we can use Woodbury approximation as stated in (7.8)

since we can express �1eK1 as the product of low-rank matrices and we know that
T �1
0 D 1

	
I. More generally, for 1 � i � p, given an expression of T �1

i�1 as a
product of low-rank matrices, we can efficiently compute T �1

i using the Woodbury
approximation (we use the low-rank structure to avoid ever computing or storing
a full n � n matrix). Hence, after performing this series of p calculations, we
are left with the inverse of Tp , which is exactly the quantity of interest since
Tp D 	I C Pp

rD1 �reKr . Although this algorithm requires p iterations of the
Woodbury approximation, these iterations can be parallelized in a tree-like fashion.
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Hence, when working on a cluster, using an Ensemble Nyström approximation
along with the Woodbury approximation requires only log2.p/more time than using
the standard Nyström method.

7.3 Theoretical Analysis

We now present theoretical results that compare the quality of the Nyström approx-
imation to the “best” low-rank approximation, i.e., the approximation constructed
from the top singular values and singular vectors of K. This work, related to [18],
provides performance bounds for the Nyström method as used in practice, i.e.,
using uniform sampling without replacement. It holds for both the standard Nyström
method as well as the Ensemble Nyström method discussed in Subsect. 7.2.2.

Our theoretical analysis of the Nyström method uses some results previously
shown by [18] as well as the following generalization of McDiarmid’s concentration
bound to sampling without replacement [13].

Theorem 1. Let Z1; : : : ; Zl be a sequence of random variables sampled uniformly
without replacement from a fixed set of lCu elements Z, and let 
WZl ! R be
a symmetric function such that for all i 2 Œ1; l� and for all z1; : : : ; zl 2 Z and
z0
1; : : : ; z

0
l 2 Z,

ˇ
ˇ
.z1; : : : ; zl /�
.z1; : : : ; zi�1; z0

i ; ziC1; : : : ; zl /
ˇ
ˇ � c: Then, for all

�>0, the following inequality holds:

Pr



 � eŒ
� � �

� � exp

� �2�2
˛.l; u/c2

�

; (7.9)

where ˛.l; u/ D lu
lCu�1=2

1
1�1=.2maxfl;ug/ .

We define the selection matrix corresponding to a sample of l columns as the
matrix S 2R

n�l defined by Si i D1 if the i th column of K is among those sampled,
Sij D 0 otherwise. Thus, C D KS is the matrix formed by the columns sampled.
Since K is SPSD, there exists X 2 R

N�n such that K D X>X. We shall denote by
Kmax the maximum diagonal entry of K, Kmax Dmaxi Ki i , and by dK

max the distance
maxij

p
Ki i C Kjj � 2Kij .

7.3.1 Standard Nyström Method

The following theorem gives an upper bound on the norm-2 error of the Nyström

approximation of the form
�
�K � eK

�
�
2

ı kKk2 � kK�Kkk2=kKk2CO
�
1=

p
l
�

and

an upper bound on the Frobenius error of the Nyström approximation of the form
�
�K � eK

�
�
F

ı kKkF � kK � KkkF =kKkF CO
�
1=l

1
4

�
.
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Theorem 2. Let eK denote the rank-k Nyström approximation of K based on l
columns sampled uniformly at random without replacement from K, and Kk the
best rank-k approximation of K. Then, with probability at least 1� ı, the following
inequalities hold for any sample of size l:

�
�K � eK

�
�
2

� kK � Kkk2 C 2np
l
Kmax

�

1C
q

n�l
n�1=2

1
ˇ.l;n/

log 1
ı
dK

max

�

K
1
2
max

�

�
�K � eK

�
�
F

� kK � KkkF

C 

64k
l

� 1
4 nKmax

�

1C
q

n�l
n�1=2

1
ˇ.l;n/

log 1
ı
dK

max

�

K
1
2
max

� 1
2

;

where ˇ.l; n/ D 1� 1
2maxfl;n�lg .

Proof. To bound the norm-2 error of the Nyström method in the scenario of
sampling without replacement, we start with the following general inequality given
by [18, proof of Lemma 4]:

�
�K � eK

�
�
2

� kK � Kkk2 C 2
�
�XX> � ZZ>�

�
2
; (7.10)

where ZDp
n
l

XS. We then apply the McDiarmid-type inequality of Theorem 1 to

.S/D�

�XX>�ZZ>�
�
2
. Let S0 be a sampling matrix selecting the same columns as

S except for one, and let Z0 denote
p

n
l

XS0. Let z and z0 denote the only differing
columns of Z and Z0, then

j
 �
S0	 � 
.S/j � �

�z0z0> � zz>�
�
2

D
�
�
�
�
z0 � z

	
z0> C z

�
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2

(7.11)

� 2
�
�z0 � z

�
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2

max
˚kzk2;

�
�z0��

2

�
: (7.12)

Columns of Z are those of X scaled by
p
n=l . The norm of the difference of two

columns of X can be viewed as the norm of the difference of two feature vectors
associated to K and thus can be bounded by dK. Similarly, the norm of a single

column of X is bounded by K
1
2
max. This leads to the following inequality:

ˇ
ˇ


�
S0	 � 
.S/

ˇ
ˇ � 2n

l
dK

maxK
1
2
max: (7.13)

The expectation of 
 can be bounded as follows:

eŒ˚� D e

�
�XX> � ZZ>�

�
2

� � e

�
�XX> � ZZ>�

�
F

� � np
l

Kmax; (7.14)

where the last inequality follows Corollary 2 of [34]. The inequalities (7.13) and
(7.14) combined with Theorem 1 give a bound on

�
�XX> � ZZ>�

�
2

and yield the
statement of the theorem.
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The following general inequality holds for the Frobenius error of the Nyström
method [18]:

�
�K � eK

�
�2
F

� kK � Kkk2F C
p
64k

�
�XX> � ZZ>�

�2
F
nKmax

i i : (7.15)

Bounding the term
�
�XX>�ZZ>�

�2
F

as in the norm-2 case and using the concentra-
tion bound of Theorem 1 yields the result of the theorem. ut

7.3.2 Ensemble Nyström Method

The following error bounds hold for Ensemble Nyström methods based on a convex
combination of Nyström approximations.

Theorem 3. Let S be a sample of pl columns drawn uniformly at random without
replacement from K, decomposed into p subsamples of size l , S1; : : : ; Sp . For r 2
Œ1; p�, let eKr denote the rank-k Nyström approximation of K based on the sample
Sr , and let Kk denote the best rank-k approximation of K. Then, with probability at
least 1 � ı, the following inequalities hold for any sample S of size pl and for any
� in the simplex � and eKens D Pp

rD1 �reKr :
�
�K � eKens
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where ˇ.pl; n/ D 1� 1
2maxfpl;n�plg and �max D maxprD1 �r .

Proof. For r 2 Œ1; p�, let Zr D p
n=l XSr , where Sr denotes the selection matrix

corresponding to the sample Sr . By definition of eKens and the upper bound on�
�K � eKr
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already used in the proof of Theorem 2, the following holds:
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We apply Theorem 1 to 
.S/ D Pp
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. Let S 0 be a sample

differing from S by only one column. Observe that changing one column of the

full sample S changes only one subsample Sr and thus only one term �r
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The expectation of ˚ can be straightforwardly bounded by:
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using the bound (7.14) for a single expert. Plugging in this upper bound and the
Lipschitz bound (7.19) in Theorem 1 yields our norm-2 bound for the Ensemble
Nyström method.

For the Frobenius error bound, using the convexity of the Frobenius norm square
�
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F
and the general inequality (7.15), we can write
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The result follows by the application of Theorem 1 to  .S/ D Pp
rD1 �r

�
�
�XX> �

ZrZ>
r

�
�
�
F

in a way similar to the norm-2 case. ut
The bounds of Theorem 3 are similar in form to those of Theorem 2. However,

the bounds for the Ensemble Nyström are tighter than those for any Nyström expert
based on a single sample of size l even for a uniform weighting. In particular, for
�i D 1=p for all i , the last term of the ensemble bound for norm-2 is smaller by a
factor larger than �maxp

1
2 D 1=

p
p.
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7.4 Experiments

In this section, we present experimental results that illustrate the performance of
the Ensemble Nyström method. We work with the datasets listed in Table 7.1,
and compare the performance of various methods for calculating the mixture
weights (�r ). Throughout our experiments, we measure the accuracy of a low-rank
approximation eK by calculating the relative error in Frobenius and spectral norms,
that is, if we let � D f2; F g, then we calculate the following quantity:

% error D

�
�
�K � eK

�
�
�
��

�
�K

�
�
�
�

� 100: (7.23)

7.4.1 Ensemble Nyström with Various Mixture Weights

In this set of experiments, we show results for our Ensemble Nyström method using
different techniques to choose the mixture weights as previously discussed. We
first experimented with the first five datasets shown in Table 7.1. For each dataset,
we fixed the reduced rank to k D 50, and set the number of sampled columns to
lD3% � n.1 Furthermore, for the exponential and the ridge regression variants, we
sampled a set of sD20 columns and used an additional 20 columns (s0) as a hold-out
set for selecting the optimal values of � and 	. The number of approximations, p,
was varied from 2 to 30. As a baseline, we also measured the minimum and the mean
percent error across the p Nyström approximations used to construct eKens. For the
Frobenius norm, we also calculated the performance when using the optimal �, that
is, we used least-square regression to find the best possible choice of combination
weights for a fixed set of p approximations by setting sDn.

The results of these experiments are presented in Fig. 7.1 for the Frobenius norm
and in Fig. 7.2 for the spectral norm. These results clearly show that the Ensemble

Table 7.1 Description of the datasets used in our Ensemble Nyström
experiments [3, 27, 35, 39, 48]

Dataset Type of data # Points (n) # Features (d ) Kernel

PIE-2.7K Face images 2;731 2,304 Linear
MNIST Digit images 4;000 784 Linear
ESS Proteins 4;728 16 RBF
AB-S Abalones 4;177 8 RBF
DEXT Bag of words 2;000 20,000 Linear
SIFT-1M Image features 1M 128 RBF

1Similar results (not reported here) were observed for other values of k and l as well.
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Fig. 7.1 Percent error in Frobenius norm for Ensemble Nyström method using uniform (“uni”),
exponential (“exp”), ridge (“ridge”), and optimal (“optimal”) mixture weights as well as the
best (“best b.l.”) and mean (“mean b.l.”) of the p base learners used to create the ensemble
approximations
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Nyström performance is significantly better than any of the individual Nyström
approximations. As mentioned earlier, the rank of the ensemble approximations can
be p times greater than the rank of each of the base learners. Hence, to validate
the results in Figs. 7.1 and 7.2, we performed a simple experiment in which we
compared the performance of the best base learner to the best rank k approximation
of the uniform ensemble approximation (obtained via SVD of the uniform ensemble
approximation). The results of this experiment, presented in Fig. 7.3, suggest that
the performance gain of the ensemble methods is not due to this increased rank.

Furthermore, the ridge regression technique is the best of the proposed tech-
niques and generates nearly the optimal solution in terms of the percent error
in Frobenius norm. We also observed that when s is increased to approximately
5–10% of n, linear regression without any regularization performs about as well as
ridge regression for both the Frobenius and spectral norm. Figure 7.4 shows this
comparison between linear regression and ridge regression for varying values of
s using a fixed number of experts (p D 10). Finally we note that the Ensemble
Nyström method tends to converge very quickly, and the most significant gain in
performance occurs as p increases from 2 to 10.

7.4.2 Large-Scale Experiments

We now present an empirical study of the effectiveness of the Ensemble Nyström
method on the SIFT-1 M dataset in Table 7.1 containing 1million data points. As
is common practice with large-scale datasets, we worked on a cluster of several
machines for this dataset. We present results comparing the performance of the
Ensemble Nyström method, using both uniform and ridge regression mixture
weights, with that of the best and mean performance across the p Nyström
approximations used to construct eKens. We also make comparisons with the K-
means adaptive sampling technique [54, 55]. Although the K-means technique is
quite effective at generating informative columns by exploiting the data distribution,
the cost of performing K-means becomes expensive for even moderately sized
datasets, making it difficult to use in large-scale settings. Nevertheless, in this work,
we include the K-means method in our comparison, and present results for various
subsamples of the SIFT-1 M dataset, with n ranging from 5K to 1M.

For a fair comparison, we performed “fixed-time” experiments. We first searched
for an appropriate l such that the percent error for the Ensemble Nyström method
with ridge weights was approximately 10%, and measured the time required by
the cluster to construct this approximation. We then allotted an equal amount of
time (within 1 s) for the other techniques, and measured the quality of the resulting
approximations. For these experiments, we set k D 50 and p D 10, based on the
results from the previous section. Furthermore, in order to speed up computation on
this large dataset, we decreased the size of the validation and hold-out sets to sD2

and s0 D2, respectively.
The results of this experiment, presented in Fig. 7.5, clearly show that the

Ensemble Nyström method is the most effective technique given a fixed amount of
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Fig. 7.3 Percent error in Frobenius norm for Ensemble Nyström method using uniform (“uni”)
mixture weights, the optimal rank-k approximation of the uniform ensemble result (“uni rank-k”)
as well as the best (“best b.l.”) of the p base learners used to create the ensemble approximations
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Fig. 7.4 Comparison of percent error in Frobenius norm for the Ensemble Nyström method with
p D 10 experts with weights derived from linear (“no-ridge”) and ridge (“ridge”) regression.
The dotted line indicates the optimal combination. The relative size of the validation set equals
s=n � 100

time. Furthermore, even with the small values of s and s0, Ensemble Nyström with
ridge-regression weighting outperforms the uniform Ensemble Nyström method.
We also observe that due to the high computational cost of K-means for large
datasets, the K-means approximation does not perform well in this “fixed-time”
experiment. It generates an approximation that is worse than the mean stan-
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Fig. 7.5 Large-scale
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dard Nyström approximation and its performance increasingly deteriorates as n
approaches 1M. Finally, we note that although the space requirements are 10 times
greater for Ensemble Nyström in comparison to standard Nyström (since p D 10

in this experiment), the space constraints are nonetheless quite reasonable. For
instance, when working with 1M points, the Ensemble Nyström method with ridge
regression weights only required approximately 1% of the columns of K to achieve
an error of 10%.

7.5 Summary and Open Questions

A key element of Nyström approximation is the number of sampled columns used
by it. More samples typically result in better accuracy. However, the number of
samples that can be processed by a single Nyström approximation is limited due to
the computational constraints, restricting its accuracy. In this work, we discussed an
ensemble based meta-algorithm for combining multiple Nyström approximations.
These ensemble algorithms show consistent and significant performance improve-
ment across a number of different datasets. Moreover, they naturally fit within a
distributed computing environment, thus making them quite efficient in large-scale
settings. These ensemble algorithms also have better theoretical guarantees than
individual Nyström approximation.

One interesting fact revealed by the experiments is that as the number of
individual Nyström approximations is increased in the ensemble, the reconstruction
error does not go toward zero. The error tends to saturate after a relatively small
number of learners and adding more does not benefit the ensemble. Even though
this counterintuitive behavior is a good thing in practice since one does not need to
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use a large number of base learners, it raises intriguing theoretical questions. Why
does the error from Ensemble Nyström converge? What is the value to which it is
converging? Can this error be brought arbitrarily close to zero? We believe that a
better understanding of these questions may lead to even better ways of designing
ensemble algorithms for matrix approximation in the future.

7.6 Bibliographical and Historical Remarks

There has been a wide array of work on low-rank matrix approximation within the
numerical linear algebra and computer science communities. Most of it has been
inspired by the celebrated result of Johnson and Lindenstrauss [31], which showed
that random low-dimensional embeddings preserve Euclidean geometry. This result
has led to a family of random projection algorithms, which involves projecting the
original matrix onto a random low-dimensional subspace [30,37,42]. Alternatively,
SVD can be used to generate “optimal” low-rank matrix approximations, as men-
tioned earlier. However, both the random projection and the SVD algorithms involve
storage and operating on the entire input matrix. SVD is more computationally
expensive than random projection methods, although neither are linear in n in terms
of time and space complexity. When dealing with sparse matrices, there exist less
computationally intensive techniques such as Jacobi, Arnoldi, Hebbian, and more
recent randomized methods [23,25,28,44] for generating low-rank approximations.
These iterative methods require computation of matrix-vector products at each step
and involve multiple passes through the data. Hence, these algorithms are not
suitable for large, dense matrices. Matrix sparsification algorithms [1, 2], as the
name suggests, attempt to sparsify dense matrices to speed up future storage and
computational burdens, though they too require storage of the input matrix and
exhibit superlinear processing time.

Alternatively, sampling-based approaches can be used to generate low-rank
approximations. Research in this area dates back to classical theoretical results that
show, for any arbitrary matrix, the existence of a subset of k columns for which
the error in matrix projection (as defined in [33]) can be bounded relative to the
optimal rank-k approximation of the matrix [46]. Deterministic algorithms such as
rank-revealing QR [26] can achieve nearly optimal matrix projection errors. More
recently, research in the theoretical computer science community has been aimed at
deriving bounds on matrix projection error using sampling-based approximations,
including additive error bounds using sampling distributions based on leverage
scores, i.e., the squared L2 norms of the columns [17, 22, 45]; relative error bounds
using adaptive sampling techniques [16, 29]; and, relative error bounds based on
distributions derived from the singular vectors of the input matrix, in work related to
the column-subset selection problem [10,19]. However, as discussed in [33], the task
of matrix projection involves projecting the input matrix onto a low-rank subspace,
which requires superlinear time and space with respect to n and is not typically
feasible for large-scale matrices.
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There does however, exist another class of sampling-based approximation
algorithms that only store and operate on a subset of the original matrix. For arbi-
trary rectangular matrices, these algorithms are known as “CUR” approximations
(the name “CUR” corresponds to the three low-rank matrices whose product is
an approximation to the original matrix). The theoretical performance of CUR
approximations has been analyzed using a variety of sampling schemes, although
the column-selection processes associated with these analyses often require operat-
ing on the entire input matrix [19, 24, 40, 50]. In the context of SPSD matrices, the
Nyström method is the most commonly used algorithm to efficiently generate low-
rank approximations. The Nyström method was initially introduced as a quadrature
method for numerical integration, used to approximate eigenfunction solutions
[6, 41]. More recently, it was presented in [53] to speed up kernel algorithms
and has been studied theoretically using a variety of sampling schemes [7, 8, 14, 18,
32–34, 49, 52, 54, 55]. It has also been used for a variety of machine learning tasks
ranging from manifold learning to image segmentation [21,43,51]. A closely related
algorithm, known as the Incomplete Cholesky Decomposition [4,5,20], can also be
viewed as a specific sampling technique associated with the Nyström method [5].
As noted by [11,52], the Nyström approximation is related to the problem of matrix
completion [11, 12], which attempts to complete a low-rank matrix from a random
sample of its entries. However, the matrix completion setting assumes that the
target matrix is low-rank and only allows for limited access to the data. In contrast,
the Nyström method, and sampling-based low-rank approximation algorithms in
general, deal with full-rank matrices that are amenable to low-rank approximation.
Furthermore, when we have access to the underlying kernel function that generates
the kernel matrix of interest, we can generate matrix entries on-the-fly as desired,
providing us with more flexibility accessing the original matrix.
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Chapter 8
Object Detection

Jianxin Wu and James M. Rehg

8.1 Introduction

Over the past twenty years, data-driven methods have become a dominant
paradigm for computer vision, with numerous practical successes. In difficult
computer vision tasks, such as the detection of object categories (for example,
the detection of faces of various gender, age, race, and pose, under various
illumination and background conditions), researchers generally learn a classifier
that can distinguish an image patch that contains the object of interest from all other
image patches. Ensemble learning methods have been very successful in learning
classifiers for object detection.

The task of object detection, however, poses new challenges for ensemble
learning, which we will discuss in detail in Sect. 8.2. We summarize these challenges
into three aspects: scale, speed, and asymmetry.

Various research contributions have been made to overcome these difficulties.
In this chapter, we mainly focus on those methods that use the cascade classifier
structure together with ensemble learning methods (e.g., AdaBoost). The cascade
classifier structure for object detection was first proposed by Viola and Jones [41],
who presented the first face detection system that could both run in real-time and
achieve high detection accuracy. We will describe this work in Sect. 8.3, with
ensemble learning methods being one of the key components in this system.
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Various research efforts have been devoted to improve the learning speed of a
cascade, which took several weeks in the original version of [41]. In Sect. 8.4,
we present several methods that improve the training time by several orders of
magnitudes, including a faster implementation of AdaBoost for cascade classi-
fiers [45], an approximate weak classifier training method that is used to form the
strong AdaBoost classifier [28], and Forward Feature Selection, an alternative to the
AdaBoost learning method [45].

In Sect. 8.5, we present methods that specifically deal with the difficulties
associated with the asymmetric learning problem inside a cascade. Two methods
are described in detail: the asymmetric AdaBoost method from [40], and the Linear
Asymmetric Classifier (LAC) method from [45].

We then move beyond the detection of upright and frontal faces into broader
object detection domains in Sect. 8.6. We will, however, still pay attention to
methods in the cascade and/or ensemble learning framework. Profile faces and
rotated faces are also effectively detected using these techniques [17]. In addition,
two methods for pedestrian detection are described: one for detection in still
images [54], and the other for detection in low resolution surveillance videos that
incorporates motion information [42]. Finally, we show that detection is not only
useful for its own sake. It can, for example, be the cornerstone for a visual tracking
system (i.e., tracking-by-detection).

Many other methods enable object detection and related tasks by applying novel
ensemble learning algorithms, which will be given in Sect. 8.8 as bibliographical
notes, after some discussions in Sect. 8.7.

8.2 Brute-Force Object Detection: Challenges

8.2.1 The Brute-Force Search Strategy

When the object of interest has a fixed aspect ratio (e.g., in frontal face detection the
height divided by width of all faces are roughly the same), the brute-force search
strategy is the most widely used method for object detection.

The first step in the brute-force search approach is to train a classifier that
can distinguish between the object of interest and all other image patches.
A training dataset is constructed, which consists of positive examples (image
patches of the target object) and negative examples (representative image patches
from the background and all other objects). Since the object of interest has a fixed
aspect ratio, image patches in the training set are normalized to the same size. The
next step is then to train a classifier using such a training dataset. In this learning
phase, ensemble learning is the most popular choice [41], although other classifiers
(e.g., the Support Vector Machine) have also been applied [25].

During the detection phase, we scan all the image patches of a fixed size given by
the training patches, by enumerating all possible locations within a testing image.
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We usually start from the top-left corner, and apply the learned classifier to
determine whether an object of interest exists in this position or not. We then move
the scanning window and apply the classifier from left to right, and from top to
bottom. That is, the classifier is applied to a regular grid of positions overlaid on the
testing image. The step size of the grid can be varied in order to trade off between
detection accuracy and running speed.

In order to detect an object bigger or smaller than the training patches, two
strategies can be used. One approach is to resize the test images multiple times,
so that the true object size equals the detector window size in one of the resized
images (e.g., in [45]). It is also viable to resize the detector. For example, in [41]
detectors for faces of different sizes are trained.

Postprocessing (or nonmaximum suppression) is the last step in brute-force
object detection systems. During the search process, the classifier usually fires
at multiple positions and scales around a true object of interest. Thus an object
can have more than ten detected positions surrounding it. The postprocessing step
merges nearby detections into a single output. In addition, if only a few (e.g., one
or two) detections are found around a position, we may want to ignore such a
detection. The postprocessing step thus can reduce the number of false detections
(false positives), at the cost of potentially missing some target objects.

8.2.2 Challenges in Learning the Classifier

Properties that are particular to the learning task in object detection make the
classifier learning step very challenging. We summarize such challenges into three
aspects: scale, speed, and asymmetry. We will describe relevant machine learning
solutions to these challenges in the following sections of this chapter.

8.2.2.1 The Scale Challenge

The number of training examples needed for a learning task grows with the
complexity of the problem. Object class detection is a task with high complexity:
we need to detect the object under many variations such as pose, illumination,
deformation, etc. As a consequence, the training set needs to be quite large, ranging
from tens of thousands [25] to several billion [45]. Special considerations are needed
for dealing with these large training sets.

8.2.2.2 The Speed Challenge

A huge training set naturally leads to a long training time. For example, the
original training method in [41] takes weeks for training a cascade classifier for
face detection. It is thus necessary to greatly reduce the training time. However, the
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testing speed is more important for object detection. Video rate (or even faster)
object detection speed has attracted the attention of researchers and substantial
progress has been made. Nowadays, real-time face detection is a must-have feature
for even entry-level digital cameras.

8.2.2.3 The Asymmetry Challenge

Object detection involves a highly asymmetric learning task. The asymmetry prop-
erty greatly contributes to the difficulty of classifier learning. Three asymmetries are
summarized in [45]:

1. Uneven class priors. It is known in machine learning that problems with
imbalanced training sets lead to poor accuracy in the minority class (the class
with relatively few training examples) [16]. In object detection, the scanning
grid generates millions of image patches, but few are the objects of interest. The
negative class easily generates a huge set of training examples, but the object
class usually has a limited set of training examples. We need to carefully deal
with this asymmetry.

2. Goal asymmetry. Even a single false detection (false positive) in one testing
image may be annoying in object detection and its applications. On one hand,
since we are scanning millions of image patches in a medium-sized testing
image, we are in essence requiring the classifier to have an extremely low false
positive rate (e.g., 10�7). On the other hand, a high detection rate (e.g., 5% false
negative/miss rate) is also required. The combination of these requirements and
the big difference among these goal numbers make learning in object detection
more challenging.

3. Unequal complexity within the positive and negative classes. As aforementioned,
the positive (object) class is complex because of possible variations. However, the
negative class is much more complex because this class contains everything else
in the world except the object of interest. It is suggested in [45] that

It is not hard to distinguish faces from cars. However, it is much harder to distinguish
faces from all other objects.

8.3 The Cascade Face Detector

The cascade structured face detector by Viola and Jones [41] is the first system
that achieves accurate frontal face detection in real time, with the help of three
components: an image feature that can be computed quickly, an efficient classifier
structure, and a novel application of the ensemble learning method (discrete
AdaBoost in this case).
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H1

H2

Hn

d1, f1

d2 , f2

dn, fn

. . .

Fig. 8.1 The cascade
classifier structure

Algorithm 1 The cascade classifier structure (modified from Algorithm 1 in [45])
1: fInput: a set of positive examples P , a set of initial negative examples N , and a database of

bootstrapping negative examples D . g
2: fInput: a learning goal G .g
3: i ( 0, H ( ;.
4: repeat
5: i ( i C 1.
6: NodeLearning f Learn Hi using P and N , and add Hi to H . g
7: Remove correctly classified non-face patches from N .
8: Run the current cascade H on D , add any false detection to N until N reaches the same

size as the initial set.
9: until The learning goal G is satisfied.

10: Output: a cascade
.H1; H2; : : : ; Hn/:

8.3.1 The Cascade Classifier Structure

The cascade classifier structure is mainly designed for high testing speed. We have
discussed in Sect. 8.2 that a complex classifier is needed for object detection tasks,
which also means that testing will be slow. This difficulty is alleviated by the
cascade classifier structure [41]. A cascade consists of a sequence of classifiers with
binary node classifiers H1; H2; : : : ; Hn, as illustrated in Fig. 8.1. An image patch
is classified as the object of interest if it can pass tests in all the nodes. Since most
background patches in a test image are filtered away by the early nodes, only a few
image patches will fire all node classifiers (most of which will contain the object
of interest). A cascade thus has very fast detection speed, as a consequence of the
rarity of target objects.

Let us assume that the errors made by node classifiers are independent of each
other. Furthermore, let us assume the cascade has 20 nodes and the node classifiers
(refer to Fig. 8.1) have high detection rate di D 99:9% and false positive rate fi D
50% for all i . The cascade classifier will be able to detect

Q20
iD1 di D 98% of

the objects, and with a false positive rate
Q20

iD1 fi D 10�6. The cascade classifier
structure is shown in Algorithm 1.
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Fig. 8.2 One example
Haar-like feature

Note that only a limited number of negative training examples are used for
training a node classifier. After T node classifiers have been trained, the current
cascade is applied to a huge set of negative image patches to find those “difficult”
examples that are wrongly classified by all the existing nodes. These examples are
added to the negative training set for training node classifier T C 1. The database of
bootstrapping negative examples D does not need to be explicitly stored. It can be
generated online by applying the current cascade to images that do not contain any
object of interest.

8.3.2 The Haar-like Features and the Integral Image

Another factor that makes the Viola–Jones face detector real-time is a set of simple
Haar-like visual features. We illustrate one example Haar-like feature in Fig. 8.2.
A Haar-like feature corresponds to a mask that has the same size as the training
image patches. Elements in the mask can only take three different values: white
pixels in the mask corresponding to the value C1, the black pixels with the value
�1, and the gray pixels with the value 0. One Haar-like feature will have a feature
value that equals the dot product between the mask and an image patch. Four types
of Haar-like features are proposed in [41].

The Haar-like features can be computed in a constant number of machine
instructions, which make evaluation of the node classifiers Hi very fast. As
illustrated in Fig. 8.2, the feature value can be quickly computed if we can efficiently
compute the sum of pixel values inside each rectangle with the same color (white or
black).

Given any image I.x; y/, an integral image [41] is defined as an image I 0 with
the same size as I . The values in I 0 are defined as:

I 0.x; y/ D
X

1�i�x;1�j �y

I.x; y/: (8.1)

Given I 0, the sum of pixel values in the rectangle ABCD (Fig. 8.2) is simply
I 0.A/C I 0.D/ � I 0.B/ � I 0.C /. Thus, a constant number of machine instructions
are needed to compute the sum of pixel values in a rectangle. The example feature
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in Fig. 8.2 requires the sum inside four rectangles, which means that it can be
computed in constant time with the help of I 0.

The integral image I 0 for a testing image I also needs to be computed in the
testing phase. Fortunately, (8.1) can be computed very efficiently by two recurrence
relationships [41]:

s.x; y/ D s.x; y � 1/C I.x; y/ (8.2)

I 0.x; y/ D I 0.x � 1; y/C s.x; y/; (8.3)

in which s.x; y/ is the sum of pixel values in the xth row till the yth column. Border
values for s and I 0 can be initialized as s.x; 0/ D 0 and I 0.0; y/ D 0. In short, only
two summations are required to compute the integral image at every pixel position.

8.3.3 AdaBoost Feature Selection and Classification

It is obvious that one single Haar-like feature has weak discrimination capability,
far below the requirement for object detection. It is inevitable then to choose (i.e.,
feature selection) and combine (i.e., classifier learning) a number of these weak
features to form a strong classifier that will act as a node classifier Hi .

Feature selection, however, is itself a challenging task. Viola and Jones used
training images with size 24� 24, which leads to 45,396 Haar-like features [41].
The large number of features makes feature selection difficult in terms of both speed
and accuracy considerations. In [41], Viola and Jones proposed a creative idea to use
the discrete AdaBoost algorithm [31] to integrate feature selection seamlessly into
the classifier learning process. Their method is shown in Algorithm 2.

The key idea in Algorithm 2 is to turn every Haar-like feature into a weak
classifier. AdaBoost is then applied to select and combine from the pool of weak
classifiers to form a strong classifier.1

When equipped with a threshold value, a Haar-like feature can be easily turned
into a decision stump (i.e., a decision tree with only one level). Formally, a weak
classifier consists of a Haar-like feature (with corresponding mask mj ), a threshold
�j , and a parity pj . The resulting weak classifier hj then classifies an example x as:

hj .x/ D
(

1 if pj mT
j x < pj �j

0 otherwise
: (8.4)

1After training the AdaBoost classifier (i.e., a node classifier in the cascade), one can adjust the
threshold � to meet the learning goal of a node classifier (e.g., a fixed detection rate or a fixed false
positive rate.)
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Algorithm 2 NodeLearning using AdaBoost (modified from Table 1 in [41])
1: fInput: a set of positive examples P , and a set of negative examples N . g
2: Initialize weights w1;i D 1

2m
; 1

2l
for yi D �1; 1 respectively, where m and l are the number of

negative and positive examples respectively.
3: for t D 1 to T do
4: Normalize the weights wt so that wt is a probability distribution.
5: For each feature j , train a weak classifier hj . The weighted error is

P
i wt;i

ˇ
ˇhj .xi / � yi

ˇ
ˇ.

6: Choose the classifier, ht , to be the weak classifier with the lowest weighted error "t .
7: Update the weights as wtC1;i D wt;i ˇ

1�ei
t in which ˇt D "t

1�"t
, ei D 0 if xi is classified

correctly by ht , and ei D 1 if otherwise.
8: ˛t D log 1

ˇt
.

9: end for
10: Output: a node classifier

H.x/ D

8
ˆ̂
<

ˆ̂
:

1 if
TX

tD1

˛t ht .x/ � �

�1 otherwise

;

in which � is an adjustable parameter to control the trade off between detection rate and false
positive rate of H .

The parity pj can take values in fC1;�1g. This parameter determines which side
of the threshold �j should be classified as positive. We will describe an efficient
method to learn the optimal value for pj and �j in Sect. 8.4.

Although a single Haar-like feature usually has a high error rate (e.g., between
40% and 50% in the face detection task [41]), the discrete AdaBoost algorithm
in Algorithm 2 can boost multiple weak classifier into a strong one. Moreover, a
cascade of these trained node classifiers can detect faces accurately in real time.
The system in [41] detects faces at the speed of 15 frames per second on a slow
700 MHz Pentium III computer. It can detect 89.8% of all faces with only 0.5 false
detections per testing image, when evaluated on the benchmark MITCCMU frontal
face detection dataset [30].

8.4 Improving Training Speed of a Cascade

It is reported in [41] that training a complete cascade requires weeks to finish. Thus,
it is very important to improve the training speed. In this section, we only consider
the NodeLearning part.
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Algorithm 3 Training a weak classifier (modified from Algorithm 3 in [45])

1: fInput: training examples with labels fxi ; yi gN
iD1 with weights

˚
wt;i

�N

iD1
, and a Haar-like

feature with corresponding mask m.g
2: Find feature values, v1; : : : ; vN , where vi D xT

i m.
3: Sort the feature values as vi1 ; : : : ; viN where .i1; : : : ; iN / is a permutation of .1; : : : ; N /, and

satisfies that vi1 � � � � � viN .
4: " ( P

yi D�1 wt;i .
5: for k D 1 to N do
6: if yik D �1 then
7: " ( " � wt;ik ; "t;i ( ".
8: else
9: " ( " C wt;ik ; "t;i ( ".

10: end if
11: end for
12: k D arg min1�i�N "t;i ; � D xT

ik
m.

13: Output: a weak classifier
h.x/ D sgn

�
xT m � �

�
:

8.4.1 Exact Weak Classifier Learning

Let us denote the number of iterations in Algorithm 2 as T , the number of Haar-like
features as M , and the number of training examples as N . The first step to accelerate
is the line 5 of Algorithm 2. This line trains a weak classifier from a Haar-like
feature, and will be called upon M T times in Algorithm 2. Training weak classifiers
needs to be done very efficient because M T is on the order of millions. Algorithm 3
gives a method for accelerating the training process, which is taken from [45].

Suppose there are N training examples, and these examples have feature values
v1; : : : ; vN for a Haar-like feature. Algorithm 3 first sorts the feature values into
vi1 ; : : : ; viN , where .i1; : : : ; iN / is a permutation of .1; : : : ; N /, and vi1 � � � � � viN .
If vik � �1; �2 � vi;kC1 is true for some integer k and two different thresholds
�1 and �2, setting the threshold of this Haar-like feature to � D �1 will have the
same accuracy on the training set as that of � D �2. Thus, we only need to check
N C 1 possible values for finding the optimal � . In addition, a sequential update
can compute the weighted error rate of different threshold values in O.N / steps.
Note that Algorithm 3 only checks the parityC1. It is easy to find the optimal weak
classifier for both parity values using the idea of Algorithm 3. The complexity of
Algorithm 3 is then O.N log N /, dominated by the complexity of sorting feature
values to get the permutation. Consequently, the complexity of Algorithm 2 is
O.NMT log N /.

However, one does not need to recompute the permutation .i1; : : : ; iN / at every
iteration inside Algorithm 2 [45]. In AdaBoost learning, weak classifiers need
to be re-trained at every iteration because of the updated weights wt;i . However,
the permutations remain constant throughout Algorithm 2, because they do not
depend on wt;i . By creating a table to precompute and store the permutations for all
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Haar-like features (O.NM log N /), training a weak classifier becomes O.N /, and
the entire AdaBoost complexity can be reduced to O.NM.T C log N //. In practice
this space-for-time strategy leads to two orders of magnitudes speedup.

8.4.2 Approximate Weak Classifier Learning

Algorithm 3 seeks to find the optimal threshold that achieves minimum weighted
error on the training set. However, the power of AdaBoost resides with the
combination of multiple weak classifiers. Theoretically, we only need to guarantee
that in each iteration the selected weak classifier ht has a weighted error rate that
is smaller than 0.5. Faster algorithm can be achieved if some approximations are
allowed in the weak classifier training step.

One such approximation algorithm was proposed by Pham and Cham [28].
Instead of directly using the raw training examples xi and their associated weights
wt;i , Pham and Cham used statistics of the training set to find the weak classifiers’
parameters. Specifically, they assume that feature values for the positive examples
follow a normal distribution N.�C; �2C/. �C is the average weighted feature value
for all positive training examples, given a specific Haar-like feature with mask m:

�C D
X

yi DC1

wt;i mT xi ; (8.5)

in which m is the mask corresponding to the Haar-like feature; �C is the standard
deviation of the feature value for positive training examples. Similarly, negative
examples’ feature values are also assumed to follow N.��; �2�/. Closed-form
and efficient solution exists for finding the optimal separating plane for two one-
dimensional normal distributions [11]. We only need to efficiently compute the
values .�C; �C; ��; ��/ when the weights wt;i are updated, in which the integral
image once again helps.

An image x and its integral image x0 are linked together by (8.1), which is
obviously a linear transformation. Thus there exists a matrix B such that x0 D Bx.
The matrix B is constant and invertible, and encodes the linear transformation
between x and x0. The example x can be expressed as x D B�1x0. One can in
turn use the integral image to compute �C as [28]:

�C D
X

yi DC1

wt;i mT B�1x0
i D mT B�1

0

@
X

yi DC1

wt;i x0
i

1

A : (8.6)

Two facts make (8.6) easy to compute. First, the term
P

yi DC1 wt;i x0
i can be pre-

computed and stored whenever wt;i are updated. Second, the vector mT B�1 is a
sparse vector which usually contains less than 10 nonzero entries.
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Note that
P

yi DC1 wt;i x0
i is the weighted average of x0 (integral version of training

patches). Let ˙x0 be the (weighted) covariance matrix of x0, then we can compute
�C as2:

�2C D
�
mT B�1

�
˙x0

�
mT B�1

�T
: (8.7)

The values �� and �� can be computed using the same trick.
This method has two attractive characteristics. First, the complexity of training

a weak classifier for a given feature is independent of N , the number of training
examples. When N is big (which is usually the case in object detection), this
approximation method is more efficient than Algorithm 3. And its speed advantage
increases when N gets bigger. Second, unlike Algorithm 3, which requires addi-
tional storage for saving the permutation vectors, this approximation method has a
smaller memory footprint. As a direct consequence, more Haar-like features can be
used in the training process (and the use of more Haar-like features usually implies
higher accuracies).

Empirically, in [28] Pham and Cham reported the training of a cascade classifier
using 295,920 Haar-like features (with more feature types than those appearing
in [41]) for face detection. The training process finished in 5 h and 30 min. Using
Algorithm 3 with 40,000 features, it took 13 h and 20 min to train a cascade, using
the same training set and running on the same hardware. With the same number
of Haar-like features, both methods achieve very similar detection accuracies,
which means that the approximate weak classifier training part does not hinder
the final classifier’s accuracy. Having the ability to deal with more features, the
approximation method reduces the number of false detections at a given detection
recall rate in comparison to Algorithm 3.

8.4.3 FFS: Alternative Feature Selection

The AdaBoost-based Algorithm 2 combines the selection of discriminative Haar-
like features and the learning of a node classifier into an integrated framework.
However, Wu et al. showed that these two components are not necessarily tied
together. Alternative feature selection and node classifier learning methods can be
applied sequentially, with the benefit of reduced training time and better detection
performance.

Forward feature selection (FFS) [44] is a frequently used greedy feature selection
method. It can be used effectively to select Haar-like features [45], whose algorith-
mic details are presented in Algorithm 4.

The first step of Algorithm 4 is to train the weak classifiers for all Haar-like
features (O.NM log N / using Algorithm 3). The same space-for-time strategy is

2Special care is required for computing ˙x0 efficiently. However, we omit these details. The readers
may refer to Sect. 3.2 of [28] for more information.
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Algorithm 4 FFS feature selection (modified from Algorithm 2 in [45])

1: fInput: a training set fxi ; yi gN
iD1, a set of Haar-like features fhi gM

iD1, where N and M are the
number of training examples and Haar-like features, respectively.g

2: for i D 1 to M do
3: Choose appropriate parity and threshold for a Haar-like feature hi , such that hi has smallest

error on the training set using Algorithm 3.
4: end for
5: Make a table Vij such that Vij D hi .xj /, 1 � i � M; 1 � j � N .
6: S ( ;; v ( 01�N , where 01�N is a row vector filled by zeros.
7: for t D 1 to T do
8: for i D 1 to M do
9: S 0 ( S [ hi ; v0 ( v C ViW, where ViW is the i th row of V .

10: fH 0.x/ D sgn
�P

h2S 0 h .x/ � �
�

is the classifier associated with S 0, and we can
compute its value using H 0.xi / D sgn.v0

i � �/.g
11: Find the � that makes H 0 has the smallest error rate.
12: "i ( the error rate of H 0 with the chosen � value.
13: end for
14: k ( arg min1�i�M "i .
15: S ( S [ hk; v ( v C VkW.
16: end for
17: Output: a node classifier

H.x/ D sgn

 
X

h2S

h .x/ � �

!

:

used: precompute and save classification results of all such classifiers into a table V .
One noticeable difference between Algorithms 2 and 4 is that in FFS these weak
classifiers are trained without using the weights. Thus, there is no need to update
these weak classifiers.

Both Algorithms 2 and 4 are “wrapper” feature selection methods, in the sense
that the effectiveness of a selected subset of features is evaluated by a classifier
trained from such a subset. Instead of using weighted voting as that in AdaBoost,
FFS uses a simple vote strategy: every weak classifier has the same weight. In every
iteration, the FFS algorithm examines every Haar-like feature, temporarily adds it to
the selected feature subset, and evaluates the classification accuracy of the updated
set of features. The Haar-like feature that leads to the minimum classification error
rate is chosen and permanently added to the selected feature subset.

However, although both algorithms are greedy in nature, they solve different op-
timization objectives. In AdaBoost, a node classifier H.x/ is implicitly minimizing
the cost function

NX

iD1

exp.�yi H.xi //: (8.8)

While in FFS we are explicitly finding the feature that leads to a node classifier with
the smallest error rate in the training set.

The classification result of a subset of features can be updated very efficiently
using the stored table V . In order to find the optimal threshold value, the trick in
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Algorithm 3 is also applicable. Note that at iteration t , the number of votes are
always integers within the range Œ0 t �, which means that we only need to consider
� in this range. Two histograms (one for positive examples and one for negative
examples) can be built: the cell i contains the number of positive or negative
examples that have i votes, respectively. Using both histograms, the error rate at
� D 0; : : : ; t can be sequentially updated efficiently.

The complexity of Algorithm 4 is O.NM.T C log N //, same as that of
Algorithm 2. However, in practice FFS has a smaller constant factor than AdaBoost.
It was reported in [45] that the fast AdaBoost implementation usually uses 2.5–3.5
times of the training time of FFS, and the original AdaBoost implementation in [41]
needs 50–150 times of that of FFS.

With faster training speed, FFS trains face detectors that have similar results
as AdaBoost in terms of both accuracy and testing speed. FFS can be used as an
alternative method for AdaBoost in training node classifiers in a cascade object
detection system.

8.5 Asymmetric Learning in Cascades

8.5.1 Goal Asymmetry and Asymmetric AdaBoost

As was discussed earlier in Sect. 8.2, at least three major challenges exist in object
detection: scale, speed, and asymmetry. Most of these challenges are addressed
in the algorithms we have discussed so far. With the cascade classifier structure,
testing speed can be improved to video rate or even higher. The bootstrap step in
Algorithm 1 can effectively deal with billions of negative training examples. The fast
AdaBoost method and the exact weak classifier learning algorithm reduce training
time of a complete cascade from weeks to hours, which is further improved by
the distribution-based approximation method and the alternative feature selection
method (Algorithm 4).

As to the asymmetries, the cascade classifier structure also handles the “uneven
class priors” asymmetry. We can choose to use the same number of positive and
negative training instances when learning every node classifier. The bootstrap
process also implicitly deals with “unequal complexity within the positive and
negative classes.” Since at every node we only use a small subset of negative
examples, the complexity of node negative training set is limited.

We are left with the “goal asymmetry.” For the complete cascade, we require high
detection rate (e.g., 95%) and extremely low false positive rate (e.g., 10�7 [41]. In a
node classifier, we try to achieve the asymmetric node learning goal [45]:

for every node, design a classifier with very high (e.g., 99.9%) detection rate and only
moderate (e.g., 50%) false positive rate.

This special requirement demands special learning algorithms. Asymmetric
AdaBoost (AsymBoost) was an attempt by Viola and Jones for solving this
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problem [40]. The idea of AsymBoost is to emphasize false negatives (i.e.,
classifying faces as nonfaces) more than false positives (i.e., classifying nonfaces
as faces). Both false positive and false negative have the same loss in Algorithm 2.
This symmetric loss is replaced by an asymmetric loss function (assuming false
negatives are k times more important than false positives):

ALoss.i/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

p
k if yi D C1, and H.xi / D �1,

1p
k

if yi D �1, and H.xi / D C1,

0 otherwise:

(8.9)

This new loss function can be easily incorporated into Algorithm 2, by pre-

weighting training examples using exp
�
yi log

p
k
�

. This strategy, however, is

unsuccessful because AdaBoost will quickly absorb this artificial difference in
initialization [40]. Instead, Viola and Jones amortize this asymmetric cost into
every iteration of AdaBoost. In a node classifier with T AdaBoost iterations,

exp
�

1
T

yi log
p

k
�

is multiplied to the example weights wt;i for t D 1; 2; : : : ; T ,

followed by a normalization procedure to make the new weights a distribution.
AsymBoost enforces a higher cost for missing faces (k > 1) than false detections

in node classifiers. When comparing complete cascades, a cascade trained using
AsymBoost usually achieves 1–2% higher detection rate with the same number of
false detections on the MITCCMU benchmark face detection dataset [40].

8.5.2 Linear Asymmetric Classifier

Another attempt to address the goal asymmetry is LAC by Wu et al. [45]. LAC trains
node classifiers to directly optimize the asymmetric node learning goal: very high
(e.g., 99.9%) detection rate and only moderate (e.g., 50%) false positive rate.

8.5.2.1 LAC Formulation

LAC does not perform feature selection. Instead, it assumes that a subset of
discriminative features have been selected by other methods (e.g., AdaBoost, FFS,
AsymBoost, or any other method). Furthermore, LAC assumes that weak classifiers
corresponding to these selected features have also been trained. Given an example
x, the classification results of weak classifiers are the input to LAC. In other words,
the input to LAC are binary vector (C1 or �1) in R

d if d Haar-like features are
selected.

For simplicity in the presentation, we use x to represent this binary vector for
the same training example x too. These two different meanings should be easily
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distinguishable from the context. In this section, we use x and y to denote positive
and negative training examples, respectively. The class labels (C1 for x and �1

for y) are implied in the symbols and thus omitted. An example is denoted as z if its
label is unknown, following the notation of [45].

LAC expresses the asymmetric node learning goal and tries to directly optimize
this goal for a linear classifier:

max
a¤0;b

Pr
x�.Nx;˙x/

˚
aT x � b

�

s:t: Pr
y�.Ny;˙y/

˚
aT y � b

� D ˇ:
(8.10)

Only the first- and second-order moments are used in the formulation of LAC: x �
.Nx; ˙x/ denotes that x is drawn from a distribution with mean Nx and covariance
matrix ˙x. The distribution of x, however, is not necessarily Gaussian. Similarly,
negative examples are modeled by Ny and ˙y. LAC only considers linear classifiers
H D .a; b/:

H.z/ D
(
C1 if aT z � b

�1 if aT z < b.
(8.11)

The constraint in (8.10) fixes the false positive rate to ˇ (and ˇ D 0:5 when
learning a node classifier). The objective in (8.10) is to maximize the detection rate.
Thus, (8.10) is a literal translation of the asymmetric node learning goal, under the
distribution assumption of training examples.

8.5.2.2 LAC Solution

Let xa denote the standardized version of aT x (x projected onto the direction
of a), i.e.,

xa D aT .x � Nx/
p

aT ˙xa
: (8.12)

ya can be defined similarly for negative examples. Equation (8.10) is converted to
an unconstrained optimization problem as:

min
a¤0

�x;a

 
aT .Ny � Nx/C � �1

y;a .ˇ/
p

aT ˙ya
p

aT ˙xa

!

; (8.13)

in which �x;a
�
�y;a

�
denotes the cumulative distribution function (c.d.f.) of xa .ya/,

and � �1
y;a is the inverse function of �y;a. This is, however, a difficult optimization

problem because we do not know the properties of �x;a and � �1
y;a .

Two assumptions are made in [45] to simplify (8.13). First, aT x is assumed to
follow a scalar normal distribution. Second, the median value of the distribution ya

is close to its mean (so that we have � �1
y;a .ˇ/ � 0 when ˇ D 0:5). These assumptions
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align well with the reality in object detection, as shown in Fig. 8.3. aT x fits closely
to a normal distribution in the normal probability plot, a visual method to test the
normality of a distribution. aT y fits almost perfectly to a normal distribution, which
implies that its mean and median are indeed the same.

Under these assumptions, for ˇ D 0:5 (8.13) can be further approximated by

max
a¤0

aT .Nx � Ny/
p

aT ˙xa
; (8.14)

which has closed-form solutions:

a� D ˙
�1
x .Nx � Ny/ ; (8.15)

b� D a�T Ny: (8.16)

When ˙x is positive semi-definite, ˙x C �I can be used to replace ˙x, where � is
a small positive number. A summary of applying LAC to train a node classifier in
object detection is shown in Algorithm 5.

Algorithm 5 LAC as NodeLearning (modified from Algorithm 4 in [45])

1: fInput: a training set composed of positive examples fxi gnx
iD1 and negative examples fyi gny

iD1,
a set of Haar-like features, and a feature selection method F .g

2: Select T weak classifiers h D .h1; h2; : : : ; hT / using F , where hi .z/ D sgn
�
zT mi � �i

�
.

3: For each training example, build a feature vector h.z/ D .h1.z/; h2.z/; : : : ; hT .z//.
4:

Nx D
nxP

iD1

h.xi /

nx
; Ny D

nyP

iD1

h.yi /

ny
;

˙x D
nxP

iD1

.h.xi / � Nx/ .h.xi / � Nx/T

nx
;

˙y D

nyP

iD1

.h.yi / � Ny/ .h.yi / � Ny/T

ny
:

5:
a D ˙

�1
x .Nx � Ny/; b D aT Ny:

6: Output: a node classifier

H .z/ D sgn

 
TX

tD1

at ht .z/ � b

!

D sgn
�
aT h.z/ � b

�
:
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Fig. 8.3 Normality test for aT x and aT y. a is drawn from the uniform distribution Œ0 1�T . Part
figure (a) shows overlapped results for 10 different a’s. From Wu et al. [45], c� 2008 IEEE, with
permission. (a) aT x. (b) aT y
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In fact, the simplified LAC solution is very similar to FDA (Fisher Discriminant
Analysis). FDA can also be used in place of LAC in Algorithm 5, using the
following equations:

a� D �
˙x C˙y

��1
.Nx � Ny/ ; (8.17)

b� D a�T Ny: (8.18)

Empirical results from [45] show that both LAC and FDA can effectively deal
with the asymmetric node learning goal in the node classifiers. On the MITCCMU
benchmark face detection dataset, both AdaBoostCLAC and AdaBoostCFDA have
higher detection rates than that of AsymBoost, when the number of false detections
are the same.

8.6 Beyond Frontal Faces

So far we have used frontal face detection as the example application to introduce
various methods. Ensemble learning methods and the cascade classifier structure, of
course, are useful not only for detecting frontal faces. In this section, we will briefly
introduce the detection of objects beyond frontal faces. We will mainly focus on
profile and rotated faces, pedestrians, and tracking.

8.6.1 Faces in Nonfrontal, Nonupright Poses

Many variations exist in the human head pose. The head can have out-of-plane
rotations, which generates left and right profile faces. One face image can also be
rotated using image processing softwares, which can generate in-plane rotated faces.
A common strategy to deal with such additional complexity is to divide face poses
into different “views” according to their in-plane and out-of-plane rotation angles.
A cascade classifier can be trained to handle a single view.

It is, however, not easy to properly separate different face poses into views. The
view structure must cover all possible head poses in consideration, and must also be
efficient during testing time. One such multiview structure was proposed by Huang
et al. [17], which is shown in Fig. 8.4.

Faces are organized into a tree structure, which can detect faces with out-of-plane
rotation angles ranging from �90ı to 90ı (i.e., from left profile to right profile), and
all in-plane rotation angles. The root of the tree include all face poses, which are
divided into three level 2 nodes according to the out-of-plane rotation: left, frontal,
and right. Left (right) profile faces are further divided into two nodes according to
the rotation angle. Thus, there are 5 nodes in the level 3 in total. Finally, every level



8 Object Detection 243

Fig. 8.4 Classifier tree for detecting multiview faces. From Huang et al. [17], c� 2007 IEEE, with
permission

3 node is divided into three nodes in level 4, corresponding to in-plane rotation
angle �45ı, 0ı, and 45ı, respectively.3 Every level 4 node then detects faces in one
specific pose.

One design choice by Huang et al. is to allow multiple nodes at the same level
in the classifier tree to be active simultaneously. For example, it is reasonable to
activate both the second and the third node in the level 2 for a right profile face with
a small out-of-plane rotation angle. This choice increases the possibility that a face
is detected. But, it also requires a new kind of node classifier: the node classifier
must be a multiple class classifier that allow multiple labels (i.e., next level nodes)
to be predicted simultaneously. The challenges that are laid out in Sect. 8.2 are still
to be solved by the new node classifier. A Vector Boosting algorithm was proposed
by Huang et al. [17] as the new node classifier.

8.6.2 Pedestrians

Pedestrian detection is another area where the cascade classifier structure and
ensemble learning have been successful.

3In addition to the level 4 nodes shown in Fig. 8.4, Huang et al. rotate their features (called Granule
features) by 90ı, 180ı , and �90ı for the level 4 nodes. This strategy effectively covers the entire
360ı range in-plane rotation.
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8.6.2.1 Pedestrian Detection in Still Images

A system that is very similar to the face detection system was used by Zhu et al. [54]
to detect pedestrians in still images with real-time speed. Pedestrians, however,
exhibit different characteristics than faces. The simple Haar-like features (and their
corresponding simple decision stump weak classifiers) are no longer discriminative
enough for pedestrian detection, even with the help of AdaBoost.

Instead, the HOG (Histogram of Oriented Gradients) feature [10] was used
in [54]. Within a 64 � 128 image patch which is typical for pedestrians, different
HOG features can be extracted from 5,031 rectangles with various sizes. They
constitute the features to be used in an AdaBoost algorithm. Similar to the Haar-
like features, a weak classifier is trained for every HOG feature. A HOG feature is
36 dimensional, which automatically means that the decision stump weak learner is
not applicable any more. The linear SVM learner (i.e., SVM using the dot-product
kernel) is used to train weak classifiers.

HOG features and SVM classifiers do not enjoy the same hyper-speed as Haar-
like features and decision stumps, in both the training and the testing phases. Two
approaches were used to accelerate pedestrian detection in [54]. First, instead of
training all 5,031 weak classifiers, 250 (�5%) HOG features are randomly sampled
and their corresponding linear SVM are trained. Second, the “integral histogram”
data structure is used to compute HOG features. The HOG feature used in [54] is
a 36 dimensional histogram, and the integral histogram can compute HOG features
efficiently, similar to the integral image data structure for the Haar-like features.

Compared to use Haar-like feature directly for pedestrian detection, HOG
features can reduce the number of false positives by several orders of magnitudes
at the same detection rate. In terms of testing speed, HOG features take about 2–4
times the time of that of Haar-like features, which can still be managed to be real-
time with modern computers.

8.6.2.2 Pedestrian Detection in Videos

The pedestrians in [54] are of size 64� 128, which is usually larger than pedestrian
size in many application domains, e.g., surveillance. Viola et al. proposed to use
motion information for pedestrian detection in surveillance videos [42].

For two consecutive video frame It and ItC1, five images can be defined in order
to capture motion information at time t :

	 D abs.It � ItC1/ (8.19)

U D abs.It � ItC1 "/ (8.20)

L D abs.It � ItC1  / (8.21)

R D abs.It � ItC1 !/ (8.22)

D D abs.It � ItC1 #/ (8.23)
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Algorithm 6 Ensemble tracking (modified from Algorithm 1 in [2])
1: fInput: video frames I1; : : : ; In, and rectangle r1 in I1 that contains the object.g
2: Initialization: Train T weak classifiers and add them to the ensemble.
3: for each subsequent frame Ij , j > 1 do
4: Test all pixels in Ij using the current ensemble strong classifier and create a confidence

map Lj .
5: Run mean shift on the confidence map Lj and report new object rectangle rj .
6: Label pixels inside rectangle rj as object and all those outside it as background.
7: Keep K best weak classifier.
8: Train new T � K weak classifiers on frame Ij and add them to the ensemble.
9: end for

10: Output: Rectangles r2; : : : ; rn.

in which the operators f"; ;!;#g shift an image by one pixel in the
corresponding direction. An extended set of Haar-like features can be applied to one
of these five images or the difference between 	 and one of the other four images
to generate motion features. Motion features, together with the appearance features
from It , form the new feature set for pedestrian detection. The same integral image
trick, the AdaBoost ensemble learning method, and the cascade classifier structure
can all be used in this new context.

8.6.3 Tracking

Tracking can also benefit from ensemble learning techniques, sometimes dubbed
“tracking-by-detection.” In a tracking by detection framework, an object detector
(e.g., the pedestrian detector) is continuously applied to every frame of a video.
Detection results of consecutive frames are then registered across frames to form
a reliable tracking result. In this section, we describe the ensemble tracking
approach [2] by S. Avidan, which is shown in Algorithm 6.

AdaBoost is used to train an ensemble classifier that distinguish the target object
from the background, and the classifier is continuously updated throughout the
tracking process. Initially, positive and negative examples are extracted from the
user labels (r1 as positive and else as negative) from the first frame I1. The ensemble
classifier is then used to classify pixels in the next frame to form a confidence map
about the possibility that a pixel belongs to the object or the background. The mean
shift mode seeking algorithm [8] is used to find the object from the confidence map.
The AdaBoost classifier needs to be updated by adding new weak classifiers using
the newly detected object and the background in the new frame.
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8.7 Discussions

We have described several object detection methods and applications, centered
around the cascade classifier structure and ensemble learning methods (especially
AdaBoost) in this chapter. In many applications (for example, face detection, pedes-
trian detection, and tracking), real-time detection speed, and detection accuracy
suitable for practical usage have been achieved.

There are, however, many open questions remain in the object detection task. At
least four factors still prevent the methods we discussed above from being applied
to detect many other objects: training data, training speed, visual features, and
multiclass learning.

• Both face and pedestrian detection require thousands of training image patches
from the target object class, which are gathered through the laborious and error-
prone human-guided data collection process. A human being need to manually
crop the object of interest from the background clutter, and transform the cropped
image patch to appropriate size. Similarly, a large set of images that do not
contain any object of interest needs to be collected and verified. It is necessary to
design new algorithms that only require few positive training images, and do not
need negative training images.

• Training a cascade (or ensemble classifier) using a large feature set is time
consuming. Although modern algorithms have reduced the training time to a few
hours, it is still too long in many applications, e.g., training an object model
for image retrieval. In fact, training time is closely related to the training set
size. Ultimately we are aiming at an accurate detector that is trained with few
examples and within seconds.

• As already seen in this chapter, different feature sets have been used in different
tasks [41, 42, 45, 54]. The Haar-like features, although contributing to super fast
detection systems, are usually not discriminative enough in the detection of
objects beyond frontal faces. It is attractive to obtain a feature set that is capable
for detecting many objects, and have an efficient evaluation strategy.

• We have focused on binary classification in this chapter: the object of interest
versus the background clutter. However, object detection is a natural multiclass
problem because we are usually interested in more than one object. A detector
structure that can detect multiple object categories is both desirable and challeng-
ing, especially when we are interested in a large number of objects.

8.8 Bibliographical and Historical Remarks

Face detection based on machine learning methods have long been studies, dated
back to at least early 1990s. Principal Component Analysis (PCA) was used in
early attempts by Turk and Pentland [39], and Moghaddam and Pentland [23]. Sung
and Poggio [35] used mixtures of Gaussians to model both faces and nonfaces.
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The idea to bootstrap negative examples was also used in [35]. Various other
machine learning methods have been used too. Osuna et al. used the Support
Vector Machine to face detection in [25]. Yang et al. applied the SNoW learning
architecture in [52]. Neural networks were used by Rowley et al. to provide accurate
face detection (both frontal and rotated) [30]. Schneiderman and Kanade [32]
used Naive Bayes to pool statistics of various image measurements into accurate
detectors that detected faces (both frontal and profile) and cars. A survey of early
face detection methods can be found in [51].

The cascade detector by Viola and Jones [41] is the first real-time frontal face
detector. The cascade classifier structure is a coarse-to-fine search strategy that was
previously used by Fleuret and Geman [13], and Amit et al. [1]. Sequential classifier
rejections have also been used before, by Baker and Nayar [4], and Elad et al. [12].
The Haar-like features have been used before, by Papageorgiou et al. [27] for object
detection. The integral image data structure that accelerates evaluation of Haar-like
features was proposed by F. Crow [9]. Both the Haar-like features and the AdaBoost
node classifier (which selects features and combines them) were used by Tieu and
Viola [36] for image retrieval.

A large number of research efforts focus on improving the cascade framework in
various aspects. Training speed of a cascade were greatly enhanced using a fast
AdaBoost implementation [45] by Wu et al., using an alternative node learning
method [47] by Wu et al., and using an approximate weak classifier training method
based on statistical properties by Pham and Cham [28]. A similar idea was used by
Avidan and Butman [3].

Features beyond the simple Haar-like features in [41] have been proposed, e.g.,
in [19,28,42,45]. A type of features called Granule features was proposed by Huang
et al. [17]. HOG features were used in [54]. A modified Census Transform feature
was used by Froba and Ernst [14]. Local Binary Patterns (LBP) was used by Zhang
et al. [53].

Various weak classifiers that are more complex than the decision stump are also
helpful. Histogram of feature values was used in [20] by Liu and Shum. Decision
trees with more than one internal node was used by Lienhart et al. [19] and Brubaker
et al. [7].

Many variants of the boosting algorithm have been used to replace discrete Ad-
aBoost. For example, an empirical study by Lienhart et al. [19] suggested using real
AdaBoost and gentle AdaBoost. Boosting variants that deal with asymmetries have
also been shown to improve object detection. Viola and Jones used an amortized
version of asymmetric AdaBoost [40]. Wu et al. proposed LAC [48]. Cost-sensitive
boosting algorithms can also improve the node classifiers [22]. Column generation
was used to train boosting classifiers (LACBoost and FisherBoost) by Shen et al.
in [33].

Alternative feature selection methods can be used to select features and train
node classifiers in a cascade. Forward Feature Selection [47] was used by Wu et al.
to form a node classifier. Floating search incorporated into boosting helped eliminate
wrong selection, which was shown by Li and Zhang [18]. Sparse linear discriminant
analysis was used by Paisitkriangkrai et al. to choose features [26].
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Improvements are also made to the cascade structure. Xiao et al. proposed
boosting chain to make use of previous trained node classifiers [50]. Cascade with
many exits (e.g., one feature is a node) have been shown to improve both detection
speed and accuracy by Bourdev and Brandt [5], Pham et al. [29], and Xiao et al. [49].

Choosing optimal operating points in the ROC curve of node classifiers were
studied by Sun et al. [34]. A two-point algorithm was proposed by Brubaker et al. [7]
to further improve the cascade.

Faces at all poses (including rotation in- and out-of plane) can be detected with
improvements to the cascade architectures. Tree structures for detecting multiview
faces were proposed by Li and Zhang [18], and Huang et al. [17]. A Vector Boosting
algorithm was also proposed in [17].

Cascade and ensemble learning methods achieved a trade off between detection
speed and accuracy for pedestrian detection [54]. However, it is worth noting that
there exist other machine learning methods that have faster speed [46] or detection
accuracy [43]. LAC from [48] was used in pedestrian detection by Mu et al. [24].

Tracking-by-detection is a successful application of object detectors. The Ensem-
ble tracking method by S. Avidan [2] is an example. Tracking-by-detection usually
requires online learning. Online boosting was used in [15] by Grabner and Bischof.
Boosted particle filter was used by Lu et al. in [21]. A detector confidence particle
filter was used by Breitenstein in [6].

Multiclass classification for object detection was studied in [38], using a
probabilistic boosting tree. A boosting framework was proposed in [37], which can
share features among different object categories.
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Chapter 9
Classifier Boosting for Human Activity
Recognition

Raffay Hamid

9.1 Introduction

The ability to visually infer human activities happening in an environment is
becoming increasingly important due to the tremendous practical applications it
offers [1]. Systems that can automatically recognize human activities can potentially
help us in monitoring people’s health as they age [7], and to fight crime through
improved surveillance [26]. They have tremendous medical applications in terms of
helping surgeons perform better by identifying and evaluating crucial parts of the
surgical procedures, and providing the medical specialists with useful feedback [2].
Similarly, these systems can help us improve our productivity in office environments
by detecting various interesting and important events around us to enhance our
involvement in important office tasks [21].

In spite of the plethora of these applications, however, the area of human activity
recognition remains mostly an open research field. One of the main challenges
in this regard is the fact that there exists no comprehensive feature vocabulary
to universally encode all the various human actions and activities. This is unlike
some of the other temporal processes where such universal vocabularies of basic
information units do exist (e.g., phonemes for speech, words for text, and DNA
elements for proteins). The designer of a human activity recognition system
therefore needs to have at their disposal a convenient way to formulate events of
interest that can be built up from smaller more general components. Since the set
of events and their defining features may not be known a priori, a mechanism for
combining these smaller units is necessary to produce the final activity detector.

One approach toward such a mechanism is to explore techniques of classifier
combination. The main purpose of combining classifiers (from here on referred
to as “weak classifiers”) is to pool their individual outputs to produce a “strong
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classifier” that is more robust and accurate than each individual weak classifier. This
ensemble learning view of human activity recognition has recently gained a lot of
attention [14, 27, 32, 35, 44, 54] and the results so far have been quite encouraging.
While there are many different ways of putting weak classifiers into a stronger
ensemble, the particular method we will focus here is called classifier boosting.

In this chapter, we present an overview of the various boosting-based learning
techniques that have been applied to the problem of human activity recognition. The
chapter begins by providing an overview of perceptual characteristics of everyday
human activities, and in turn motivating the usefulness of employing ensemble
learning approach for the task of automatic activity recognition. This is followed
by describing the various features that have previously been used to learn ensemble
classifiers for recognizing human activities. Subsequently, the different types of
human behaviors that have been approached from an ensemble learning perspective
are described. The chapter concludes with some of the challenges that remain open
in this field, and the current research directions that are being explored.

9.2 Characterizing Everyday Human Activities

The three classical ways in which scientists have viewed the characterization of
human activities [50] are in terms of (1) direct perceptual inputs, (2) using a
notion of context sensitive activity descriptors, and (3) considering activities as a
set of partially ordered action subsequences. These views facilitate different types
of characterizations of human activities, the usefulness of which depends on the
dynamics and complexity of the activities being considered. We present here a
brief outline of these views of human activities, highlighting their strengths and
weaknesses for learning boosting-based models of human behaviors.

9.2.1 Activities from Direct Perceptual Inputs

Consider the activity of a person walking in a room. One way of interpreting this
activity may be using the motion properties of the scene detected directly through
the raw perceptual cues (see Fig. 9.1a) [39]. In this characterization of walking, there
is no notion of time, physical states, or causality, and the activity is coded strictly in
terms of low-level sensory stimuli. It is argued that human beings perceive a set of
our everyday activities purely on the basis of direct perceptual inputs. The classic
demonstration of activity detection by humans using direct perceptual information
was done by the “Moving Lights Display” experiment [29] where human subjects
were able to distinguish between actions of walking, running, or stair climbing
simply from the intensity patterns of the lights attached to the joints of actors.

Not utilizing any semantic information, this characterizations of human activities
is generally limited to the class of activities that are quite basic in nature. The main
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Fig. 9.1 Different Descriptions of an Example Activity of Walking—(a) The activity of walking
is considered in terms of the very basic perceptual cues. (b) Walking activity is considered in
terms of mid-level activity descriptors that follow certain temporal and causal constraints such as
repetitively placing one foot in front of the other. (c) The activity of walking being considered as a
function of the person’s intent of walking through a door

advantage of this view of human activities is that extracting low-level features from
video can be done in an efficient and accurate manner. There is a variety of low-
level visual features that can be used to this end. These features can be effectively
used in a boosting-based framework to construct an accurate ensemble classifier for
detecting human actions. At the same time, however, since this view takes a purely
bottom–up approach toward human activities, it usually does not scale well to more
involved activities where information about the actor and their context is crucial for
recognizing what activities are being performed.

9.2.2 Activities Using Activity Descriptors

Another way to look at our example activity of walking may be in terms of
semantically meaningful activity descriptors [45], such as repetitively putting one
foot in front of another while keeping the other foot on the ground (see Fig. 9.1b).
Such activity descriptors follow basic rules of causality, e.g., the movement of one
foot is caused by the other foot having been placed on the ground. Similarly, these
activity-descriptors must follow a set of physical constraints, e.g., both feet cannot
be apart from each other beyond a certain distance which is a function of the person’s
physical frame.

This characterization of human activities is context sensitive, i.e., the interpre-
tation of walking using this activity view requires some notion of a person’s feet,
the difference between left and right, and some notion of the ground [33]. These
contextual concepts are usually hard to detect accurately using any one detector.
Therefore, boosting-based learning methods can be suitably used to combine
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multiple weak classifiers to construct a strong ensemble classifier that could detect
these contextual concepts accurately, and in turn allow recognition of the considered
activity descriptors. Encoding these contextual concepts for a variety of different
actions and activities is, however, a tedious task, and therefore this view does not
scale very well to a large variety of human actions and activities performed in many
different environments.

9.2.3 Activities as Partial Orderings of Action Subsequences

Another way of interpreting human activities is as a set of partially ordered action
subsequences that follow certain temporal constraints. For instance, our activity
of walking may be interpreted as a set of ordered actions of taking one step after
another, such that the current step is not taken until the previous step is complete.
This view of human activities is particularly useful when the considered activities
take place over a long-duration of time, and involve multiple actors and objects
for their completion. Examples of such activities include cooking some dish in a
kitchen, or manufacturing a product on a factory floor, etc.

This activity view can be used to encode activities as frequencies of their con-
stituent subsequences. The presence and absence of any one of these subsequences is
usually not decisive to infer whether a particular activity is being performed—rather
the constituent action subsequences encode the activity signature in a cumulative
sense. This view therefore aligns well with the boosting-based learning frameworks,
where each constituent subsequence can be considered as a weak classifier of the
overall activity.

9.3 Technical Background for Boosting-Based Learning

Classifier boosting is a particular instance of ensemble learning algorithms, where
the output of different weak classifiers (weak learners) are combined to produce a
more accurate inference. The main intuition behind these methods is to provide a
different subset of the training set that is most informative to an individual weak
learner, by looking at the training sets provided to the previously trained weak
learners. Many boosting algorithms modify the weight for each training sample
based on the errors the previous weak learners make, by increasing the weight if
there is a classification error for a sample. Likewise, they reduce the weight of a
sample if the current ensemble is able to correctly classify a sample. By interpreting
the weights as importance, at each boosting iteration the weak learners focus on
solving increasingly harder examples.
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More formally, boosting [47] provides a simple method to sequentially fit
additive models of the form:

H.v/ D
MX

mD1

hm.v/; (9.1)

where v is the input feature vector, M is the number of rounds, and

H.v/ D log
P.z D 1jv/

P.z D �1jv/
(9.2)

is the log odds of being in class C1, where z is the class membership label .˙1/.
Hence, P.z D 1jv/ D �.H.v//, where �.x/ D 1=.1 C e�x/ is the sigmoid or
the logistic function. The terms hm are often called weak learners, while H.v/ is
called a strong learner. Boosting optimizes the following cost function one term of
the additive model at a time:

J D E
�
e�zH.v/

�
; (9.3)

where zH.v/ is called the “margin,” and relates to the generalization or out-of-
sample error rate. This cost function can be thought of as a differentiable upper
bound on the misclassification rate [41] or as an approximation to the likelihood of
the training data under a logistic noise model [17].

There are many different ways to optimize (9.3). One of the more popular of
these methods is called “gentleBoost” [16]. In gentleBoost, the optimization of J

is done using adaptive Newton steps, which corresponds to minimizing a weighted
squared error at each step. Specifically, at each step m, the function H is updated
as:

H.v/ WD H.v/ C hm.v/; (9.4)

where hm is chosen so as to minimize a second order Taylor approximation of the
cost function:

arg min
hm

J.H C hm/ ' arg min
hm

E
�
e�zH.v/.z � hm/2

�
: (9.5)

Replacing the expectation with an empirical average over the training data, and
defining weights wi D e�zi H.vi / for training example i , this reduces to minimizing
the weighted squared error:

Jwse D
NX

iD1

wi .zi � hm.vi //
2; (9.6)

where N is the number of training examples, and for the i th training example, we
have wi D e�zi H.vi /.
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Algorithm 1 Boosting for Binary Classification
Set: H.vi /; wi D 0; 8i D 1 W N

for m D 1; 2; 3; : : :; M do

Fit: 8i D 1 W N , hm.vi / WD aı
�

vf
i > �

�
C bı

�
vf

i � �
�

Update: 8i D 1 W N; H.vi / WD H.vi / C hm.vi /

Update: 8i D 1 W N; wi WD wi e
�zi hm.vi /

end for

Minimizing Jwse depends on the specific form of the weak learns hm. It is
common to define the weak learners to be simple functions of the form

hm.v/ D aı
�
vf > �

� C bı
�
vf � �

�
; (9.7)

where vf denotes the f th component of the feature vector v, � is a threshold, ı

is the indicator function, and a and b are regression parameters. In this way, the
weak learners perform feature selection, since each one picks a single component f .
These weak learners are called decision or regression stumps h since they can be
viewed as degenerate decision trees with a single node. The best stump can be found
just as we would learn a node in a decision tree, i.e., we search over all possible
features f to split on, and for each one, we search over all possible thresholds �

induced by sorting the observed values of f ; given f and � , we can estimate the
optimal a and b by weighted least squares. Specifically, we have:

a D
P

i wi zi ı
�

vf
i > �

�

P
i wi ı

�
vf

i > �
� (9.8)

and

b D
P

i wi zi ı
�

vf
i � �

�

P
i wi ı

�
vf

i � �
� (9.9)

The parameters f , � , a, and b are picked to have the lowest cost Jwse, and the
resulting weak learner is added to the classifier ensemble, i.e.:

H.vi / WD H.vi / C hm.vi /: (9.10)

Finally, boosting updates the weight of each training example as:

wi WD wi e
�zi hm.vi /: (9.11)

The overall algorithm is summarized in Algorithm 1.
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9.4 Features Used for Boosting Based Activity Recognition

It is a common practice in ensemble learning methods to extract different types
of features from the training videos, and then select them discriminatively to form
the final ensemble classifier. These selected features are usually thresholded to form
feature stubs, and their outputs are combined together to reach the final classification
result. The type of features extracted depends on various factors, including how
far is the actor from the capturing camera, how many actors are present in the
environment, how much sensor noise does an environment have, are the considered
actions short-term or long-term in duration, and do the considered actions have a
pronounced motion signature.

There are many different ways to categorize the commonly used features
employed in learning ensembles for human activity recognition. In the following,
we present one such category of these features that have been shown to be a useful
choice to be employed in ensemble learning for activity recognition.

9.4.1 Optical Flow-Based Features

Optical flow of an object is a very informative cue about how the object usually
moves over space and time. This measure can be particularly discriminative if the
considered actions have observably different motion trajectories. The examples of
these action domains include sports actions observed at a distance [14], and human
gestures for sign language [9], etc.

In its basic form [24], optical flow methods try to calculate the motion between
two image frames which are taken at times t and t C ıt at every voxel position. For
a 2D C t dimensional case, a voxel at location .x; y; t/ with intensity I.x; y; t/ will
have moved by @x, @y, and @t between the two image frames, and the following
image constraint can be given:

I.x; y; t/ D I.x C @x; y C @y; t C @t/: (9.12)

Assuming the movement to be small, the image constraint at I.x; y; t/ with Taylor
series can be developed to get:

I.x C @x; y C @y; t C @t/ � I.x; y; t/ C @I

@x
@x C @I

@y
@y C @I

@t
@t (9.13)

which results in

@I

@x
Vx C @I

@y
Vy C @I

@t
D 0; (9.14)
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Fig. 9.2 Illustration of flow field for a pair of running action frames. The flow and gradient fields
are divided into a 3� 3 grid, and for each of the grid-cells is computer to better localize the motion
characteristics of the actor

where Vx , and Vy are the x and y components of the velocity or optical flow of
I.x; y; t/, and @I

@x
, @I

@y
, and @I

@t
are the derivatives of the image at (x; y; t) in the

corresponding directions. The visual representation of optical flow for a pair of
images is shown in Fig. 9.2.

As optical flow captures motion information over only a pair of frames, this
feature has mostly been used for detecting relatively short duration activities. These
include detection of people walking on pavements, players kicking a soccer ball
in the field, and dancers performing different dance moves in a performance. The
general idea of these applications is to aggregate measures of the optical flow
fields in different parts of a frame, and provide them as an input to the boosting
algorithm. During training, the boosting algorithm learns the most discriminative
features along with their respective thresholds that can disambiguate between the
considered actions and everything else.

9.4.2 2-D Shape-Based Features

Shape-based features have traditionally been used for object detection. However,
more recently these features have found some use in action recognition problems
as well. A popular 2-D shape-based feature that has been very frequently used
for action recognition problems is Histogram of oriented gradients or HOG [10].
This feature counts occurrences of gradient orientation in localized portions of
an image. This method is similar to that of edge orientation histograms, scale-
invariant feature transform descriptors, and shape contexts, but differs in that it is
computed on a dense grid of uniformly spaced cells and uses overlapping local
contrast normalization for improved accuracy.
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The first step to compute HOG feature is to apply the 1-D centered, point discrete
derivative mask in one or both of the horizontal and vertical directions of the input
image. This is done by filtering the image with the following filter kernels:

Œ�1; 0; 1�; and Œ�1; 0; 1�T : (9.15)

The second step of calculation involves creating the cell histograms. Each pixel
within the cell casts a weighted vote for an orientation-based histogram channel
based on the values found in the gradient computation. The cells themselves can
either be rectangular or radial in shape, and the histogram channels are evenly
spread over 0–180ı or 0–360ı, depending on whether the gradient is “unsigned”
or “signed.” As for the vote weight, pixel contribution can either be the gradient
magnitude itself, or some function of the magnitude.

As with the optical flow features, The general idea of 2-D shape-based features
is to aggregate measures of the gradient fields in different parts of a frame, and
provide them as an input to the boosting algorithm. As the 2-D shape-based features
do not capture the temporal aspect of human activities, their usage for ensemble-
based activity classifier is not as popular as, for instance, the optical flow features.
However, it has been shown that using the shape-based features along with the
optical flow features can improve the overall performance of the ensemble classifier.

9.4.3 3-D Volumetric Features

The 3-D volumetric features extend the 2-D shape-based features in the temporal
dimension, and view human actions as three-dimensional shapes induced by the
silhouettes in the space–time volume. These methods range from computing a
single frame-based representation of the spanned space–time volume to be used in a
template matching sense, to computing local space–time features on the space–time
volume spanned by an action. There has also been work in matching the space–
time volumes spanned by one action class with others. In the following, we briefly
explain some of these views on 3-D volumetric features.

9.4.3.1 Temporal Templates

The idea behind temporal templates is to map a spatio temporal patterns of
a person’s motion to a static spatial pattern, which can thereon be used for
discriminating that particular action from others. One such method, proposed in [5]
uses the notion of Motion Energy Image (MEI), and Motion History Images (MHI),
to encode the motion patterns of various objects into a single static image.

The MEI is the binary cumulative motion content of an action represented in an
image. More formally, MEI can be represented as:

E�.x; y; t/ D
��1[

iD0

D.x; y; t � i/; (9.16)
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Fig. 9.3 Example space–time volumes spanned by actions of jumping, walking, and running.
Figure courtesy [18]

where D.x; y; t/ is a binary image sequence indicating regions of motion. For many
applications, image differencing is adequate to generate D. Intuitively, the MEI
represents where in an image was the action performed in a cumulative sense.

The MHI represents how the action occurs in an image. In an MHI (H� ), pixel
intensity is a function of the temporal history of motion at that point. More formally,
MHI can be represented as:

H� .x; y; t/ D
�

� if D.x; y; t/ D 1

max.0; H�.x; y; t � 1/ � 1/ otherwise
: (9.17)

Temporal template-based representations are fast to compute and robust to sensor
noise; however, they are best applicable for simple settings with usually a single
object. The reason for this limitation is that these representations focus on the low-
level image-signals to encode the activity structure without using any mid-level
activity-characterizations that can potentially get at the underlying activity structure
in a more explicit way.

9.4.3.2 Local and Global Space–Time Shape Features

This class of features [18] deals with the volumetric space–time shapes induced
by human actions, and exploits the solution to the standard Poisson equation [13]
to extract various shape properties that are utilized for shape representation and
classification. Example space–time shapes generated by different actions in the
space–time volume are illustrated in Fig. 9.3.

Consider an action and its space–time shape S surrounded by a simple, closed
surface. One way to represent the properties of S is to assign every point on S a
value that depends on the relative position of that point within S . More specifically,
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we can assign each space–time point within S with the mean time required
for a particle undergoing a random-walk process starting from the point to hit
the boundaries of S . This measure can be computed by solving the Poisson
equation [13] of the form:

ıU.x; y; t/ D �1 where .x; y; t/ 2 S: (9.18)

Here, the Laplacian of U is defined as

ıU.x; y; t/ D Uxx C Uyy C Utt (9.19)

subject to

U.x; y; t/ D 0 at the bounding surface @S: (9.20)

The solution to the Poisson equation can be used to extract a wide variety of
useful shape properties. These include both features that are local in terms of
space and time, as well as integral of these to compute more global features that
characterize the space–time shapes at a larger scale. A useful local Poisson-based
feature is the space–time saliency which describes how quickly the space at a certain
point in space–time is evolving. Another important local feature is the space–time
orientation which encodes the direction in which the space–time shape of an action
is changing.

9.4.3.3 Space–Time Volumetric Features

Inspired by the 2-D spatial Harr wavelet-based features used in face detection [51],
there have been attempts to consider 3-D cubic features to characterize the motion
content of a space–time volume [30]. These features span the entire spatio temporal
volume of the video at different spatial and temporal scales. They are computed by
performing simple arithmetic operations over the content of the volumes they span.
These feature values are then provided to the boosting algorithm to select the most
discriminative features at the spatial and temporal scale that perform best during
training. A graphical illustration for these features is given in Fig. 9.4.

9.4.4 Space–Time Interest Points

This class of features [4,31,43] is based on the work done in spatial domain, where
points with a significant local variation of image intensities have been extensively
investigated [15, 22]. The basic intuition behind these features is that interesting
events in video are characterized by strong variations in the data along both the
spatial and the temporal dimensions. More generally, points with nonconstant
motion correspond to accelerating local image structures that may correspond to
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Fig. 9.4 Illustration of space–time volumetric features. The top row illustrates the 3-D volumes
used for feature computation. The first feature calculates the volume. The other three features
calculate volumetric differences in X , Y , and time. The bottom row shows multiple features learned
by using a boosting-based ensemble classifier to recognize a hand-wave action in a space–time
volume. Figure courtesy [30]

accelerating objects in the world. Hence, such points can be expected to contain
information about the forces acting in the physical environment and changing
its structure. Space–time interest point detectors are geared toward automatically
detecting such potentially useful points in the spatio temporal video volume.
Features based on the statistics of these interest points can be used in an ensemble-
based framework to learn discriminative classifiers for different actions. An example
of space–time interest points for walking action is illustrated in Fig. 9.5.

9.4.5 Discrete Event-Based Features

Features covered in this chapter so far are mostly quite local both in terms of space
as well as time. These types of features work well in a boosting-based framework
especially for actions that span over smaller duration of time. Example of such
actions include kicking a ball, pointing toward something, and performing a dance
step.
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Fig. 9.5 Results of detecting spatio temporal interest points for the motion of the legs of a walking
person: (a) 3-D plot with a threshold surface of a leg pattern (upside down) and detected interest
points; (b) interest points overlaid on single frames in the sequence. Figure courtesy [31]

However, such low-level features do not usually scale very well when it comes
to recognizing more complex activities, that can span over longer durations of
time. The examples of such activities include cooking something in the kitchen,
making a delivery at a loading dock, or manufacturing something on a factory
floor. Features needed to build classifiers that could recognize such long-duration
complex activities generally involve more contextual knowledge and can themselves
be considered as discrete short-term events.

The choice of these event-based features depends strongly on the environments
in which the activities of interest are being performed. Some of the environments in
which the in situ activities have been explored from this perspective include office
floors [27], loading dock areas [19], and household kitchens [20]. The examples of
the constituent events in one of these environments, say a loading dock, would be
a delivery vehicle entering the delivery area, a person opening the back door of the
delivery truck, a person pushing a delivery cart, etc. Example frames representing
some of these events in a loading dock setting are shown in Fig. 9.6.

An important question in generalizing this parsimonious view of human activity
features, that remains far from being solved, is whether there is a minimal set of
universal events that could be used to describe the majority, if not all, of human
activities [3,38]. The hope is that if we knew such a vocabulary, we could train expert
classifiers specifically designed for the different members of this universal set. Until
we come up with such a universal set, however, ensemble learning provides a useful
alternative to combine different classifiers for a complex activities, that could be
combined to achieve relatively high recognition performance.
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Fig. 9.6 The figure shows a delivery activity in a loading dock area. The objects whose
interactions define these events are shown in different colored blocks

9.5 Ensemble Learning for Different Types of Human
Behaviors

Using the aforementioned features, the method of ensemble learning has been
applied to build classifiers for different types of human activities. These include
relatively short-term motions, medium-duration actions, and extended activity
sequences. In the following, we will cover some of such previous works and describe
their general approach.

9.5.1 Ensemble Learning for Short-Term Motions

Since features based on optical flow measurements are usually short in their
temporal duration, such features have been more popular for recognizing short-
term motions. Examples of such motions include walking [52], and sports ac-
tions [14], etc. The general principle in these methods is to compute some measure
of the flow fields in each pair of video frames during training, and use them to learn
the most discriminative feature and its corresponding optimal threshold for each
round of boosting. Each of these weak classifiers, i.e., the discriminative feature and
its corresponding optimal threshold, are then used to classify the training data, and
the results of this classification are used to both assign a weight to the weak classifier
in direct proportion to how well it did, and to reweigh the training data for the next
boosting round in inverse proportion to whether they were correctly classified by the
current weak classifier. The intuition here is to give more importance to the training
data points that were not classified correctly in the current stage such that the weak
classifier selected in the next stage would be aimed more to classify the currently
wrongly classified data points. Finally, during testing, a final classification decision
is made at each pair of frames by using a linear weighted combination of all the
weak classifiers. These frame-based decisions are combined, usually using a voting
scheme, to reach the overall video-level motion classification.

Work done in [14] applied this approach of using boosting-based learning to
detect short-term actions on the KTH data set [42]. In this data, there were six action
classes considered. Each action is performed several times by 25 subjects in four
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Fig. 9.7 Sample frames from six action classes used from KTH data-set [42]. Figure courtesy [14]

different conditions, namely outdoors, outdoors with scale variation, outdoors with
different clothes, and indoors. Representative frames from this action data set are
shown in Fig. 9.7.

The classification results obtained by [14] on the KTH data set are given in
Table 9.1. It can be observed that the most confusion is between the last three
actions, i.e., running, jogging, and walking. The overall average accuracy that
they report is 90:5%. The authors of [14] also report the comparative average
classification results that several previously proposed algorithms report on the KTH
data set. These results are presented in Table 9.2. Note that the boosting based
approach of [14] is comparable with [28], while outperforming other approaches.

9.5.2 Ensemble Learning for Medium-Duration Actions

Similar to short-term motion recognition, the idea of performing frame-pair based
classification can be applied for medium-duration actions as well. These include
writing on the white board, or cleaning eye-glasses etc. However given the longer
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Table 9.1 Classification Performance—Results of [14] on KTH data-set [42]: Confusion matrix
for per-video classification (overall accuracy of 90.5%). Horizontal rows are ground truth, and
vertical columns are predictions

Boxing Hand clapping Hand waving Jogging Running Walking

Boxing 100 0.0 0.0 0.0 0.0 0.0
Hand clapping 2 98 0.0 0.0 0.0 0.0
Hand waving 0.0 0.0 100 0.0 0.0 0.0
Jogging 0.0 0.0 0.0 81 10 9
Running 3 0.0 0.0 24 72 1
Walking 0.0 0.0 0.0 6 1 93

Table 9.2 Comparative Classification Performance—Average classifica-
tion performance of different algorithms reported by [14] on KTH [42] is
given. Also provided is the manner in which the data set was divided into
testing and training subsets

Methods Training method Accuracy

Fatahi et al. [14] Splits 90.50
Jhuang et al. [28] Splits 91.70
Nowozin et al. [37] Splits 87.04
Niebles et al. [36] Leave one out 81.50
Dollar et al. [12] Leave one out 81.17
Schuldt et al. [42] Splits 71.72
Ke et al. [30] Splits 62.96

duration of actions, it is usually better to incorporate the temporal information of
the actions more directly. This can be done either in the form of features used in the
feature-pool [40], or the selection mechanism itself [46].

Encoding of temporal information in the features used in the feature pool
of a boosting based framework usually involves finding correspondence amongst
features over multiple frames [11, 48]. Once these correspondences are found, the
matched features are used to learn weak classifiers in the usual boosting framework.

Temporal information regarding the dynamics of actions can also be incorporated
in the boosting framework itself. In the classical boosting framework, the decision
of a weak classifier is counted based on each frame independently. However, this can
be modified to allow a weak classifier to use its previous responses (previous frames
in the temporal sense) if it helps decrease the overall error for that classifier. The
duration and the manner in which preceding results of a weak classifier contribute
to its result in the current frame will impact its current detection and false positive
(FP) rates. Learning the optimal combination manner and temporal duration over
which the previous decisions impact the current inference of a weak classifier can
result in overall improved classification performance.

Work done in [46] applied the approach of incorporating temporal information
in the feature selection procedure of boosting to improve classification performance
for medium duration actions. In particular, they report results on a data set of 11
actions using a one against-all approach. Data from multiple people was used to
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Table 9.3 Classification Performance of TemporalBoost—Results of the method proposed in [46]
are presented. Column 1 and 2 show the name and number of instances of the considered actions.
Column 3 and 4 present the rates of True Positive (TP) and FP. The last column presents the
numbers for TP and true negatives for where the algorithm reported the detected action was in the
test video

Action Class size
True Positives
(TP) [in %]

False Positives
(FP) [in %]

Localize
TP/TN

Talking on phone 4 75 0 90/91
Checking voicemail

on phone
2 100 0 90/74

Bringing cup to face 5 80.0 20 90/91
Scratching/rubbing

face
9 83.3 11.1 92/92

Resting hand on face 12 88.8 16.7 89/94
Taking medication 9 85.7 11.1 87/89
Yawning with hand at

mouth
7 100 0 96/96

Yawning with no
hand at mouth

6 100 0 93/98

Putting on eyeglasses 9 77.7 33.33 85/86
Putting on earphones 6 66.7 16.7 85/87
Rubbing eyes 8 87.5 12.5 90/1

create this data set. The ensemble classifier for each of the action classes was
limited to seven weak-classifiers each. The features used were number of unique
segments in the video frames using mean-shift segmentation [8]. The classification
and temporal localization performance of the method proposed in [46] on the 11
considered actions is given in Table 9.3.

9.5.3 Ensemble Learning for Extended Activities

The dynamics of long-term activities such as delivering a package in a loading
dock [19], or cooking a dish in a household kitchen [20], are usually represented
as sequences of shorter duration actions. One way of encoding the structure of
such extended activities is in terms of statistics of their action subsequences.
In an ensemble-based framework, these subsequences can be used to construct
weak classifiers where the selection algorithm would pick the optimal threshold
on the counts of the most discriminative feature for each boosting round. This
approach toward building ensemble classifiers for long-durational human activities
is very similar to how researchers in Natural Language Processing have looked
at documents [25]. This similarity between human activities and documents as
sequences of discrete information entities can potentially open avenues for further
interdisciplinary research.
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9.6 Summary

Intelligent systems that can recognize human activities are essential for the progress
of many important research areas, e.g., automatic video surveillance, robotics,
and healthcare, etc. There are, however, many steep challenges in building such
intelligent systems. One of these challenges is the hitherto lack of a universal feature
set that can discriminatively describe most of the everyday human activities. This
underscores the importance of having a mechanism for selecting and combining a
subset of visual features from a larger detectable feature set, to form an accurate
classifier for the different activities occurring in an environment. Boosting is a
class of such feature selection and combination mechanisms that have been shown
to be quite effective to learn classifiers for a variety of different types of human
activities.

There has been a lot of recent work in exploring the usage of boosting-based
ensemble learning technique for human activity recognition [14, 27, 32, 35, 44, 54].
There are, however, some important research questions that still remain to be
addressed and further investigated. Some of these directions concern purely with
the mechanics of the boosting algorithm itself, while the rest are mostly application
centric. Some of these future direction are listed in the following.

9.6.1 Theoretical Research Directions

Better Feature Selection Policy: Recall that in boosting algorithms (Algorithm 1),
the weight distribution of the training data depends of how the immediately previous
selected weak classifier performed on them. This feature selection mechanism is
however quite greedy as it only depends on the last selected weak classifier. There
is a substantial potential to improve this selection mechanism such that it is not so
greedy in its search policy, and therefore could result in a more global optimum.

More Descriptive Feature Pool: Currently, the feature pool from which weak-
classifiers are constructed is created a priori. Therefore, it has a limited represen-
tativeness which does not adapt as the boosting algorithm progresses. There is
potential to explore if we can discover a better feature pool as a function of how
the previous feature pools have performed thus far.

Information Sharing Across Multiple Classes: Traditionally, most of the work in
boosting based methods has been done on two class classification problems. While
there has been some important work done for multiclass classification in a boosting
based setting [55], there is ample of research opportunity to exploit the overlap
that naturally exists among different classes in order to reduce the sample and
computational complexity of the learning problem.



9 Classifier Boosting for Human Activity Recognition 269

9.6.2 Application-Based Research Directions

Multiagent and Crowd-Based Behaviors: Most of the previous work in using
boosting-based methods for activity recognition have focused on single agent
activities. However, there are many human behaviors that involve multiple agents
who interact with each other to accomplish a task. Similarly there are crowd-based
behaviors where the group of people are best considered holistically, and not as
individuals. There is plenty of research scope for applying boosting-based methods
to learn classifiers that can recognize these types of human activities.

Robust Temporal Features: A crucial part of encoding the dynamics of human
activities is the set of features that are used to represent them. Most of the current
features used in activity recognition systems only encapsulate the temporal dynam-
ics of human activities over a relatively short duration of time. Therefore, there is
significant research opportunity to extend the temporal span of the features used
by activity recognition systems. Besides other ways, this can be done by coming
up with more robust local feature detection methods and better correspondence
algorithms over multiple frames.

9.7 Bibliography and Historical Remarks

The field of automatic understanding of human activities in video has been
increasingly active, specially in the last two decades [1, 6, 49]. One of the earliest
investigations about the analysis of human motion was done by the contempo-
rary photographers Etienne Marey and Eadweard Muybridge in the 1850s who
photographed moving subjects and revealed several interesting and artistic aspects
involved in human and animal locomotion. The Moving Light Display experiment
of Johansson [29] provided a strong argument for a principled study and analysis
of human motion perception, which eventually became a precursor to the current
exploration of this problem in Computer Vision. In more recent years, automatic
human activity analysis systems have been applied for a variety of different
applications, including monitoring people’s health as they age [7], to fight crime
through improved surveillance [26], to help surgeons perform better by identifying
parts of surgical procedures [2], and by detecting important events in office settings
to enhance our involvement and participation in our jobs [21].

An important part of the explorative effort of designing systems for automatic
human activity analysis has been devising informative and robust visual features or
attributes that can be extracted in an efficient manner. These features range from
the very low-level ones that attempt to capture the pixel-level characteristics of
videos [4, 5, 10, 18, 24, 30, 31, 43], to more high-level ones that incorporate object
and scene-level contextual information to represent activities [23, 27, 34].
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One of the main challenges in video-based human activity analysis has been a
lack of a comprehensive feature vocabulary to universally encode all the various
human actions and activities. The designer of a human activity recognition system
therefore needs to have at their disposal a convenient way to formulate events of
interest that can be built up from smaller more general components. Since the set
of events and their defining features may not be known a priori, a mechanism for
combining these smaller units is necessary to produce the final activity detector. One
approach toward such a mechanism that has recently gained a lot of attention is to
use boosting-based schemes to combine multiple weak detectors of human activities
to form a more accurate ensemble classifier [14, 27, 32, 44, 54].

In particular, boosting has been successfully applied to learn models for relatively
short-term activities such as walking or running [52]. More recently work on
the application of boosting-based learning for detecting short-term actions has
focused on crowed scenes [30] and group behaviors [53]. Boosting-based learning
approach has also found its application in learning short-term actions in sports
and performance activities [14] where the movements and capture mechanisms are
relatively constrained.

For medium duration actions and activities, e.g., writing on a white board,
or cleaning ones eyeglasses, the incorporation of temporal information has been
done both at the feature level [40] as well as the selection mechanism itself [46].
An ongoing direction of exploration is the application of boosting-based learning
approach for long-term activities, where counts of discrete action subsequences
could be used as the feature pool to learn discriminative models of extended
activities. This research direction is inspired by the treatment of documents as
counts of word subsequences, and the application of boosting-based approach to
learn document models [25].
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Chapter 10
Discriminative Learning for Anatomical
Structure Detection and Segmentation

S. Kevin Zhou, Jingdan Zhang, and Yefeng Zheng

10.1 Introduction

Due to the increasing demand for more medical images in clinical practices
for better assessment and diagnosis, medical image analysis has gained more
importance than ever. In this chapter, we will focus on the subarea of anatomical
structure detection and segmentation, which plays an important role in speeding up
the diagnostic work flow.

Although remarkable progresses have made in detecting and segmenting anatom-
ical structures, it still confronts a lot of challenges to obtain results that can be
used in clinical applications. This is mainly due to significant appearance variation
present in the medical images caused by a multitude of factors:

• Sensor noise/artifact. As in any sensor, the medical equipment generates
noise/artifact inherent to its own physical sensor and image formation process.
The extent of the artifact depends on the image modality. For example, while
high-dose Computer Tomography (CT) produces image with less artifacts,
low-dose CT is quite noisy. Metal objects (such as implants) can generate a lot of
artifacts in CT. Ultrasound imaging has notorious spectral noise and even signal
dropout.

• Patient difference. Different patients exhibit different build forms: fat or slim,
tall or short, adult or child, etc. As a result, the anatomical structures also exhibit
different shapes. All contribute to the creation of different images.

• Machine difference. Machines from different vendors tend to produce different
images even for the same patient. This holds even for highly standardized CT
machines, although the difference is much more subtle.
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• Pathology. Pathology can give rise to highly deformed anatomical structures or
even missing ones. This makes statistical modeling very difficult.

• Operator experience and preference. For some image modality such as ultra-
sound, the acquired image quality highly depends on the operator experience
of manipulating the ultrasound transducer against the correct anatomy in the
correct plane. Again in ultrasound imaging, sonographers have own preferences
in adjusting the imaging parameters (such as dynamic range, contrast, etc.). Not
to mention that there are a lot of imaging protocols in Magnetic Resonance
Imaging (MRI).

• Field of view. Dose radiation is a major concern in CT. In an effort to minimize
the dose radiation, only the necessary part of human is imaged. This creates
partial scans and narrow field of view, in which the anatomical context is highly
weaken or totally gone.

• Soft tissue. Anatomical structures such as internal organs are soft tissues of
similar properties. They (such as liver and kidney) might even overlap, forming
very weak boundary between them.

In addition, image reading and diagnosis allow almost no room for mistake.
While the accuracy requirement is always stringent, the demand for speedy pro-
cessing does not diminish. A speedy work flow is crucial to any radiology lab. No
radiologist or physician has the patience to wait for hours or even minutes to obtain
the analysis results.

However, it is still possible to devise algorithms that are used in many real
applications. In this chapter, we will present several such algorithms for anatomical
structure detection and segmentation. They are based on the principle of learning
from a large annotated data set in a discriminative fashion.

10.1.1 Shape Representation

In this chapter, we use an explicit point-based shape representation. The shape C is
comprised of two parts: rigid pose P and deformable part S , that is, C D .P; S/.

If a similarity transformation is used for a 2D pose P , that is,

P D .X; Y; �; Sx/; (10.1)

where .X; Y / for translation, � for orientation, and Sx for isotropic scale for
both x- and y-directions, then the above shape representation reduces to Kendall’s
interpretation [16].

To better describe the pose, we use for a 2D shape a 5D-parameterization

P D .X; Y; �; Sx; Sy/; (10.2)
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with .X; Y / for translation, � for orientation, and .Sx; Sy/ for scale in both x- and
y-directions, and for a 3D shape a 9D-parameterization

P D .X; Y;Z; ; �; �; Sx; Sy; Sz/; (10.3)

with .X; Y;Z/ for translation, . ; �; �/ for orientation, and .Sx; Sy; Sz/ for
anisotropic scale. If no confusion, we also specifically call the orientation and
scale parts as pose.

For the deformable part S , we assume that it consists of N points, i.e.,

S D .X1;X2; : : :;XN /; (10.4)

where Xi is a point in 2D (i.e., X D .X; Y /) or 3D (i.e., Xi D .X; Y;Z/). In 2D,
the cubic spline is used to interpolate the points into a curve. In 3D, the point-based
shape representation is equivalent to a 3D mesh or a 3D surface.

Sometime we use the PCA to reduce the dimensionality by keeping a sufficient
amount of the total energy. If so,

S D .˛1; ˛2; : : :; ˛K/; (10.5)

where ˛i is the coefficient for i th principal components.
For anatomical structure detection, we estimate its rigid pose P . For anatomical

structure segmentation, we estimate its both rigid pose P and deformable part
S . This is usually done sequentially, first estimating P then S , because the
detection naturally provides shape initialization. For example, one common way
is to transform the mean shape into the pose P as an initial guess.

The chapter is organized as follows. Section 10.2 will present various discrimina-
tive learning approaches for efficiently detecting anatomical structures. Section 10.3
will concentrate on discriminative learning approach for accurately segmenting
anatomical structures.

10.2 Discriminative Learning for Anatomical
Structure Detection

The state-of-the-art object detection method is described in Viola and Jones [26].
They train a binary classifier off-line that differentiates an object of interest from
the background and then online exhaustively slide a scanning window over the input
image for object instances.

It is challenging to build a real-time detector that incorporates accurate pose
estimation using a detector like the one discussed in [26] (i.e., exhaustively scanning
the space of all possible combinations of translation and pose). We refer to the
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Fig. 10.1 Detecting the LV and its pose in a 3D ultrasound volume is important to automatically
navigate multiple canonical planes for clinical practices. Reprinted from [32]. c�2007 IEEE

orientation and scale parameters as pose only here and in Sect. 10.2.1. Consider
detecting the left ventricle (LV) in a 3D echocardiogram, an ultrasound volume
of the human heart (see Fig. 10.1). Discovering the LV configuration is helpful
for orienting the 3D volume. For example, from a known LV configuration, one
can meet an emerging clinical need to automatically display canonical 2D slices.
Because the LV can occur at an arbitrary location and orientation, one needs to
search over nine parameters to fully align the LV. When extending the method of
[26], the computational cost increases exponentially with the dimensionality of the
parameter space. Furthermore, volume rotation and integral volume computations
are time consuming because their computation is proportional to the number of
voxels. To aggravate the problem, learning one monolithic classifier to handle all
possible variations is challenging.

A promising solution that requires only one integral volume/image is to train a
collection of binary classifiers to handle different poses. A variety of structures are
proposed to combine these classifiers. The most straightforward way is a parallel
structure (Fig. 10.2a) that trains a classifier for each discretized pose [28]. In
detection, all classifiers are tested for every scanning window. The computation
linearly depends on the number of poses. To accelerate the detection speed, the
pyramid structure is proposed by Li et al. [17]. For the parallel structure, several
classifiers might fire up at the same place when the actual pose is in-between
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Fig. 10.2 Different structures for multi-pose detection. The circle represents a binary fore-
ground/background classifier. The rectangle represents a multiclass pose classifier. (a) Parallel
cascade. (b) Tree. (c) Network. Reprinted from [32]. c�2007 IEEE

the discretized poses. To estimate accurate pose needs additional work due to the
difficulty in comparing responses among these classifiers. To discriminate different
poses explicitly, a tree structure (Fig. 10.2b) that uses the multiclass classifier
as a differentiator is applied. In [15], a decision tree is used to determine the
pose of a face, followed by the binary classifier trained for that pose only. Both
parallel and tree structures only test a sparse set of orientations and scales to meet
the real-time requirement. However, anatomical structures in medical images can
possess arbitrary orientations and scales, and the detection task needs to accurately
determine them. Under such circumstances, it is challenging to build a rapid detector
using the approaches above. In general, the speed is inversely proportional to the
number of poses tested. In order to give an accurate estimate of the pose, speed
must be sacrificed.
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To overcome these bottlenecks, we will present two novel detection methods.
The first is Probabilistic Boosting Network (PBN) in Sect. 10.2.1 and the second is
Marginal Space Learning (MSL) in Sect. 10.2.2.

In Sect. 10.2.3, we formulate the detection problem into a regression setting in
order to better leverage the anatomical context. The object pose will be directly
regressed out without resorting to an exhaustive scanning scheme.

10.2.1 Probabilistic Boosting Network (PBN)

In PBN, we explore along the promising line of the tree structure. To avoid searching
the whole configuration space and rotating images and volumes, we break up
the configuration space into two parts: for the first part, translation, we still use
exhaustive search; and for the second part, rotation and scale, we directly estimate
the parameters from the image’s appearance. We couple exhaustive scanning
with pose estimation. In this way, we successfully eliminate the computational
dependency proportionally to the number of poses.

For the tree structure, usually only one branch is evaluated based on the decision
of the multiclass classifier [15] and hence, the error made by the multiclass classifier
has great influence on the detection result. In [14], several branches may be chosen,
based on the hard decision provided by the VectorBoost algorithm, for the purpose
of reducing the risk of possible errors in pose estimation. We handle the uncertainty
of pose estimation using probabilities as soft decisions. The multiclass classifier
is trained using the LogitBoost algorithm [10], which provides a sound theory of
computing the probability of the pose. This probability is used to choose branches
to evaluate. The final probability of being the object is computed by applying the
total probability law. In addition, we obtain a better estimation of the pose by using
the conditional mean of the pose distribution.

To further increase the efficiency of the tree structure, a graph-structured network
(Fig. 10.2c) is proposed to reject background as early as possible. The multiclass
classifier is decomposed into several subclassifiers by taking advantage of the
additive native of the boosted classifier. The subclassifiers and binary detectors are
coupled to form a graph structure that alternates the two task of pose estimation and
object detection. Furthermore, we add a binary classifier as a prefilter of the graph
to reject the background that can be easily differentiated from the foreground.

10.2.1.1 Pose Estimation

Given a window containing the object of interest, the goal is to estimate the pose
parameter(s) of the object based on the image appearance I in the window. We first
discuss the algorithm for one-parameter estimation and then use the one-parameter
estimation algorithm as a building block for multiple parameters.
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The object appearance variation is caused not only by the rigid transformation we
want to estimate but it is also influenced by noise, intensity variation, and nonrigid
shape deformations (as well as other effects). As a result, a robust algorithm is
needed to guarantee the accuracy of the pose estimation. We handle the uncertainty
of the pose estimation by learning a probability of the parameter, ˇ, subject to the
given input, I , p.ˇjI /. This probability can be used to estimate ˇ accurately and to
avoid errors in subsequent tasks.

In practice, p.ˇjI / is approximated with discretized distribution p.ˇj jI /, based
on a discrete set of parameter values, fˇ1; ˇ2; : : : ; ˇJ g. We implemented the
image-based multiclass boosting algorithm proposed by Zhou et al. [38]. This
algorithm is based on the multiclass version of the influential boosting algorithm
proposed by Friedman et al. [10], the so-called LogitBoost algorithm, which fits
an additive symmetric logistic model via the maximum-likelihood principle. This
fitting proceeds iteratively selecting weak learners and combining them into a strong
classifier. The output of the LogitBoost algorithm is a set of J response functions
fFj .x/I j D 1; : : : ; J g, where each Fj .x/ is a linear combination of a subset of
weak learners:

F n
j .x/ D

nX

iD1
fj;i .x/; (10.6)

where fj;i .x/ is a weak learner, and n is the number of weak learners. LogitBoost
provides a natural way to calculate the posterior distribution of class label:

pnj .x/ D exp.Fj .x//PJ
kD1 exp.Fk.x//

: (10.7)

Refer to [38] for more details.
One advantage of the LogitBoost algorithm is that the computed posterior

probability asymptotically approximates the ground truth [10]. This means that a
trade-off can be made between the approximation accuracy and the computational
cost by adjusting the number of weaker learners in the response functions. This
property is used to build the network structure to reject background cases more
efficiently in the early stages.

We infer the parameter ˇ by using a conditional mean, which is a Minimum
Mean Square Error (MMSE) estimator:

Ǒ
MMSE D

Z

ˇ

ˇp.ˇjI / dˇ �
X

j

ˇj p.ˇj jI /: (10.8)

This gives a better estimate than a Maximum A Posterior (MAP) estimate from
a discrete set of possible values of ˇ because the MMSE estimate can interpolate
between values in discrete set.

The multiclass classifier that estimates one parameter can be used as a building
block to construct a graph structure for estimating two or more parameters. In
this section, we focus on two-parameter estimation, but the same principle can be
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Fig. 10.3 Different structures for estimating probability of two-parameter pose. In the type-c
structure, the parameter, ˇ, is called the “root” parameter. Reprinted from [32]. c�2007 IEEE

applied to situations with more than two parameters. Suppose that the two unknown
parameters are ˇ and � , the goal is to estimate p.ˇ; � jI / from the image I .
Figure 10.3 gives a graphical illustration of three possible structures that can be
used to model this estimation task.

For the type-a structure, we treat the combination of ˇ and � as a single
variable and train p.ˇ; � jI / directly. This approach is structurally simple and has
good performance when the number of combined states is small. However, when
the number of combined states is large, or the appearance variation caused by
both parameters are too complex to learn using a single classifier, this approach
performs poorly. In this case, a divide-and-conquer strategy is appropriate to
estimate parameters sequentially by using multiple multiclass classifiers.

The type-b structure assumes ˇ and � are independent. To train p.ˇjI / (or
p.� jI /), we treat the variation in � (or ˇ) as intraclass. The joint distribution is
approximated as

p.ˇ; � jI / � p.ˇjI / � p.� jI /: (10.9)

The drawback of this approach is the assumption of independence of ˇ and � is
often invalid.

For the type-c structure, we apply the exact conditional probability law:

p.ˇ; � jI / D p.� jˇ; I / � p.ˇjI /: (10.10)

This can be represented as a tree structure. A root multiclass classifier is trained
to learn p.ˇjI / by treating the variation in � as intraclass. Each child node
corresponds to the conditional probability p

�
� jˇj ; I

�
for a discrete state ˇj . To

computep.ˇ; � jI / efficiently, we omit branches whose probabilityp.ˇjI / is below
a specified threshold.

The choice of the root parameter for the type-c structure influences the overall
performance, because the amount of the image appearance variation caused by the
two parameters is not the same. Usually, the parameter that causes larger appearance
variation should be the root node. This makes learning p.ˇjI / easier, and leads to a
better division of the pose space.
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How to choose among these three types is determined by the data properties. An
intuitive principle is that, if the number of the poses is small, and the appearance
variation can be sufficiently captured by one classifier, we use the type-a structure.
If the parameters are justifiably independent, use the type-b structure. Otherwise,
use the type-c structure.

10.2.1.2 Probabilistic Boosting Network (PBN)

We now present PBN that integrates evidence from pose estimator and binary
detectors. A PBN has three basic features:

1. It is probabilistic. A PBN leverages the fundamental total probability law to
compute the probability of being object O . Assuming that the pose parameter
ˇ is discretized into fˇ1; ˇ2; : : : ; ˇJ g, we have

p.OjI / D
JX

jD1
p.OjI; ˇj /p.ˇj jI /; (10.11)

where p.OjI; ˇj / is the binary classifier specific to the parameter ˇj . To
compute (10.11) efficiently, we ignore branches whose pose probability is
smaller than a prespecified threshold p0:

p.OjI / �
X

j Wp.ˇj jI /�p0
p.OjI; ˇj /p.ˇj jI /: (10.12)

2. It uses boosting. As discussed in Subsect. 10.2.1.1, the probability p.ˇj jI /
is implemented using the multiclass LogitBoost algorithm [10]. The classifier
p.OjI; ˇj / is implemented using the cascade of boosted binary classifiers [26],
which are able to deal with numerous negative examples and eliminate them as
early as possible during testing. To implement the binary classifier in the cascade,
one can use AdaBoost [9], binary LogitBoost [10] or other variants. Suppose that
the cascade has Sj stages, then p.OjI; ˇj / is computed as

p.OjI; ˇj / D
SjY

sD1
ps.OjI; ˇj /; (10.13)

where ps.OjI; ˇj / is the binary classifier for the sth cascade. The complexity of
the classifier ps.OjI; ˇj / increases as the number of stages increases. Without
loss of generality, assume that S1 D S2 D � � � D SJ D S . If say Sj < S , we
simply set ps.OjI; ˇj / D 1 for s > Sj .

3. It has a network structure. The total probability law:

p.OjI / D
JX

jD1

SY

sD1
ps.OjI; ˇj /p.ˇj jI /; (10.14)
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can be implemented in a tree-structured network as shown in Fig. 10.2b. Using
this structure, negatives are rejected quickly when they flow through the network
while the positives traverse through several branches. By combining evidence
from these branches, one is able to accurately estimate p.OjI / using (10.14).

In [23] a learning procedure called a Probabilistic Boosting Tree (PBT) was
presented. Both PBN and PBT are able to provide object detection probabilities
using boosting, and both have a tree structure, but they also differ significantly. In
the tree-structured PBN, each node corresponds to a specified parameter, while in
PBT there is no specific parameter. PBN also estimates pose parameters explicitly.
Finally, PBN provides an efficient graph structure as shown next, which is not the
case for PBT.

10.2.1.3 Efficient Graph Structure

The tree-structured PBN is not yet optimal in terms of computation because the
overhead of computing the probability p.ˇjI / is necessary for all background
windows. These candidate windows are randomly sent to several branches of
cascades and rejected by these branches. This creates a dilemma for the tree
structure: the purpose of a multiclass classifier is to select proper binary classifiers
to reject background, but determining the pose of these background patches wastes
computation.

One way to solve this problem is to discard as many background windows
as possible via a focus-of-attention mechanism. This can be achieved by pooling
together data from positives in different poses to train a pose-invariant classifier as a
prefilter. We tune the pose-invariant detector to have a 100% detection rate (although
with a large number of false positives) by adjusting the threshold. This detector
cannot offer a precise detection, but it is useful for rejecting a large percentage of
the background candidates.

Even when the prefilter classifier is used, there are still nonobject windows pass-
ing the prefilter, causing unnecessary overhead computations of p.ˇjI /. Following
the idea of the cascade structure for binary detector p.OjI; ˇj /, which breaks its
computation into several stages with increasing complexity, we also decompose the
computation of p.ˇjI / into several stages by taking the advantage of the additive
model arising from the LogitBoost algorithm. The response functions at the sth
stage is

F s
j .x/ D F s�1

j .x/C
snX

iD1
fj;i .x/; (10.15)

where sn is the number of weak learners at the sth stage. For the type-b and type-c
structures, the computation of the probability p.ˇ; � jI / can also be decomposed by
distributing the weak learners of the multiclass classifiers to several stages.
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Fig. 10.4 The PBN detection algorithm. Reprinted from [32]. c�2007 IEEE

We organize the whole detector as a graph-structured network as shown in
Fig. 10.2c, which alternates the two tasks of pose estimation and background
rejection by hierarchically distributing the overhead of computing p.ˇjI /. Fig-
ure 10.4 shows the detection algorithm of PBN with a single pose parameter. PBN
detection with multiple pose parameters can be implemented in a similar way.
The network is evaluated top-to-bottom. More weak learners are added to update
p.ˇjI / at each new stage, which approximates the true posterior probability more
accurately due to its asymptotic convergence property. Based on the newly estimated
p.ˇjI /, the binary classifiers corresponding to large p.ˇjI / are evaluated at this
stage. If a new binary branch unexplored in earlier stages is selected, we trace back
to the beginning and re-evaluate the whole branch. If the candidate fails all selected
binary classifiers, it is considered as a background window and the computation
stops; otherwise, it proceeds to the next stage.

More accurate pose estimation helps to determine whether the candidate window
belongs to the foreground, while the binary classifiers help to determine if it is
necessary to continue evaluating p.ˇjI /. This way, the positives are evaluated at
a minimum number of branches and the negatives are quickly rejected by either the
prefilter or early detector cascades.

In [32], we applied PBN for real-time detection of the LV from 3D ultrasound
volumes and the LA from 2D images. We also compared the PBN to the parallel
and tree structure detection approaches. Please refer [32] for more details.
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Fig. 10.5 Diagram for object detection using marginal space learning. Reprinted from [34].
c�2008 IEEE

10.2.2 Marginal Space Learning (MSL)

To accurately localize a 3D object, we need to estimate nine pose parame-
ters (three for position, three for orientation, and three for anisotropic scaling).
A straightforward extension of a 2D object detection method to 3D is not possible
due to the exponential increase of the computation demands by the use of exhaustive
search. Here we present a generic learning-based method for efficient 3D object
detection, namely MSL [33, 34]. Instead of exhaustively searching the original
nine-dimensional pose parameter space, only low-dimensional marginal spaces are
searched in MSL to improve the detection speed. To be specific, we split the
estimation into three steps: position estimation, position–orientation estimation,
and position–orientation–scale estimation, as shown in Fig. 10.5. First, we train
a position estimator that can tell us if a position hypothesis is a good estimate
of the target object position in an input volume. After exhaustive searching of
position marginal space (three-dimensional), we preserve a small number of position
candidates (e.g., 100) with the largest detection scores. Second, we do joint
position–orientation estimation with a trained classifier that can tell us if a position–
orientation hypothesis is good. The orientation marginal space is exhaustively
searched for each position candidate preserved after position estimation. Similarly,
we only preserve a limited number of position–orientation candidates after this step.
Finally, the scale parameters are searched in a similar way. Since after each step
we only preserve a small number of candidates, therefore a large portion of search
space (which has low posterior probability) is pruned efficiently in the early steps.
Complexity analysis shows that MSL can reduce the number of testing hypotheses
by six orders of magnitude, compared to the exhaustive full space search. Since the
learning and detection are performed in a sequence of marginal spaces, we call our
method MSL.

Many modern medical imaging modalities (e.g., CT) can capture a 3D volume
with submillimeter resolution. For the localization of an anatomical structure, we
do not need such high resolution. Therefore, normally, MSL-based detection is
performed on a low resolution (e.g., 3ṁm) volume. The final boundary delineation
is performed on the original high resolution volume.
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10.2.2.1 Training of MSL Classifiers

To train a classifier, we need to split a set of hypotheses into two groups, positive and
negative, based on their distance to the ground truth. The error in object position and
scale estimation is not comparable with that of orientation estimation. Therefore, a
normalized distance measure is defined by normalizing the error in each dimension
to the corresponding search step size,

E D max
iD1;:::;D

ˇ̌
P e
i � P t

i

ˇ̌ı
SearchStepi ; (10.16)

where P e
i is the estimated value for pose parameter i , P t

i is the corresponding
ground truth, and D is the dimension of the pose parameter space. For similarity
transformation estimation, the pose parameter space is nine dimensional, D D 9.
A sample is regarded as a positive one if E � 1:0 and all the others are negative
samples.

Training of Position Estimator: In this step, we want to estimate the position of the
object and learning is constrained in a marginal space with three dimensions. Given
a hypothesis .X; Y;Z/, the classification problem is formulated as whether there is
an object centered at .X; Y;Z/. Haar wavelet features are fast to compute and have
been shown to be effective for many applications [20,24,26]. Therefore, we use 3D
Haar wavelet features for learning in this step.

The search step for position estimation is one voxel. According to (10.16), a
positive sample .X; Y;Z/ should satisfy

max
˚ˇ̌
X �Xt

ˇ̌
;
ˇ̌
Y � Y t ˇ̌ ; ˇ̌Z �Zt

ˇ̌� � 1 voxel; (10.17)

where .Xt ; Y t ; Zt / is the ground truth of the object center. Given a set of positive
and negative training samples, we extract 3D Haar wavelet features and train a
classifier using the PBT [23]. After that, we test each voxel in a volume one by
one as a hypothesis of the object position using the trained classifier. The classifier
assigns each hypothesis a score, and we preserve a small number of candidates (100
as default) with the highest detection score for each volume.

Training of Position–Orientation Estimator: In this step, we want to jointly es-
timate the position and orientation. The classification problem is formulated as
whether there is an object centered at .X; Y;Z/ with orientation ( ; �; �). After
object position estimation, we preserve the top 100 candidates, .Xi ; Yi ; Zi /, i D
1; : : : ; 100. Since we want to estimate both the position and orientation, we
need to augment the dimension of candidates. For each position candidate, we
quantize the orientation space uniformly to generate hypotheses. The orientation
is represented as three Euler angles in the ZXZ convention,  , �, and � . The
distribution range of an Euler angle is calculated from the training data. Each
Euler angle is then quantized within the range using a step size of 0.2 radians
(11ı). For each candidate .Xi ; Yi ; Zi /, we augment it with N hypotheses about
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orientation, .Xi ; Yi ; Zi ;  j ; �j ; �j /, j D 1; : : : ; N . Some are close to the ground
truth (positive) and others are far away (negative). The learning goal is to distinguish
the positive and negative samples using trained classifiers. Using the normalized
distance measure of (10.16), a hypothesis .X; Y;Z; ; �; �/ is regarded as a positive
sample if it satisfies both (10.17) and

max
˚j �  t j; j� � �t j; j� � �t j� � 0:2; (10.18)

where . t ; �t ; � t / represent the orientation ground truth. All the other hypotheses
are regarded as negative samples. To represent the orientation information, we have
to rotate either the volume or feature templates. We use the steerable features
described below, which are efficient under rotation. Similarly, the PBT is used for
training and the trained classifier is used to prune the hypotheses to preserve only a
few candidates (50 as default).

Training of Similarity Transformation Estimator: The similarity transformation
(adding the scales) estimation step is analogous to position-orientation estimation
except learning is performed in the full nine dimensional similarity transformation
space. The dimension of each position-orientation candidate is augmented by
searching the scale subspace uniformly and exhaustively. The search step is set to
two voxels.

10.2.2.2 Steerable Features

Global features, such as 3D Haar wavelet features, are effective to capture the global
information (e.g., orientation and scale) of an object. To capture the orientation
information of a hypothesis, we should rotate either the volume or the feature
templates. However, it is time consuming to rotate a 3D volume and there is no
efficient way to rotate the Haar wavelet feature templates. Local features are fast to
evaluate but lose the global information of the whole object.

We present steerable features, which can capture the orientation and scale of the
object and at the same time be very efficient. In steerable features, we sample a
few points from the volume under a sampling pattern. We then extract a few local
features for each sampling point (e.g., voxel intensity and gradient) from the original
volume. The novelty of our steerable features is that we embed the orientation and
scale information into the distribution of sampling points, while each individual
feature is locally defined. Instead of aligning the volume to the hypothesized
orientation, we steer the sampling pattern. This is where the name “steerable
features” comes from.

Figure 10.6 shows how to embed a hypothesis in steerable features using a regular
sampling pattern (illustrated for a 2D case for clearance in visualization). Suppose
we want to test if hypothesis .X; Y;Z; ; �; �; Sx; Sy; Sz/ is a good estimation of
the similarity transformation of the object. A local coordinate system is defined
to be centered at position .X; Y;Z/ (Fig. 10.6a) and the axes are aligned with
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Fig. 10.6 Using a regular sampling pattern to incorporate a hypothesis .X; Y;  ; Sx; Sy/ about a
2D object pose. The sampling points are indicated as “C”. (a) Move the pattern center to .X; Y /.
(b) Align the pattern to the orientation  . (c) The final aligned sampling pattern after scaling along
each axis, proportional to .Sx; Sy/. Reprinted from [34]. c�2008 IEEE

the hypothesized orientation . ; �; �/ (Fig. 10.6b). A few points (represented as
“C” in Fig. 10.6) are uniformly sampled along each coordinate axis inside a box.
The sampling distance along an axis is proportional to the scale of the shape in
that direction (Sx , Sy , or Sz) to incorporate the scale information (Fig. 10.6c).
The steerable features constitute a general framework, in which different sampling
patterns [33] can be defined.

At each sampling point, we extract a few local features. Steerable features are
flexible to incorporate different local image features. In our implementation, we
extract 24 local features based on the intensity and gradient from the original
volume. Please refer to [34] for more details of the local image features. A major
reason to select these features is for their efficiency.

10.2.2.3 Object Localization on Unseen Volume

This section provides a summary about the testing procedure on an unseen volume.
The input volume is first converted to isotropic low resolution (e.g., 3 mm). All
voxels are tested using the trained position estimator and the top 100 candidates,
.Xi ; Yi ; Zi /, i D 1; : : : ; 100, are kept. Each position candidate is augmented with
N hypotheses about orientation, .Xi ; Yi ; Zi ;  j ; �j ; �j /, j D 1; : : : ; N . Next, the
trained position–orientation classifier is used to prune these 100�N hypotheses and

the top 50 candidates are retained,
� OXi; OYi ; OZi ; O i ; O�i ; O�i

�
, i D 1; : : : ; 50. Similarly,

we augment each position–orientation candidate with M hypotheses about scaling
and use the trained classifier to rank these 50 � M hypotheses. The average of the
top K (K D 100) candidates is taken as the final aggregated estimate.

In following, we use heart chamber detection in cardiac CT [34] as an example to
analyze the efficiency of MSL. At the 3 mm resolution, a typical cardiac CT volume
has roughly 64 � 64 � 64 voxels, which corresponds to around 260,000 position
hypotheses. The orientation space is discretized under a resolution of 0.2 radians,
resulting in about 1000 orientation hypotheses (N D 1;000). Under two-voxel
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searching stepsize, there are about 1,000 scale hypotheses (M D 1;000). If the
parameter space is searched uniformly and exhaustively (we call this approach full
space learning), there are about 2:6 � 1011 hypotheses to be tested! However, using
MSL, we only test about 260;000C100�1000C50�1000D 4:1�105 hypotheses
and reduce the testing by almost six orders of magnitude.

MSL significantly outperforms a brute-force full space search. However, it still
has much room for improvement since each of the three subspaces (the translation,
orientation, and scale spaces) are uniformly sampled without considering the
correlation among parameters in the same marginal space. Recently, we proposed
constrained MSL to exploit such correlation, which can further improve the detec-
tion speed by an order of magnitude. With the latest improvements, an anatomical
structure can be detected in about 0.1 s on a standard personal computer. Please refer
to [35] for more details.

Due to the exponential number of hypotheses, full space learning (FSL) does
not work on a 3D object detection problem, even after using the coarse-to-fine
searching strategy. However, for a 2D object detection problem (estimating five pose
parameters), both MSL and FSL methods are applicable. In [36], we performed
a thorough comparison experiment on LV detection in MRI images. Experiments
show MSL significantly outperforms FSL on both speed and accuracy. For more
details, please refer to [36].

10.2.3 Shape Regression Machine (SRM)

Figure 10.7a demonstrates the basic idea of the regression-based medical anatomy
detection using the 2D B-mode echocardiogram, which is a 2D image slice of
the heart acquired by an ultrasonic imaging device. In particular, we focus on
the canonical view of apical four chamber (A4C) acquired using the transthoracic
transducer. An A4C echocardiogram contains all four heart chambers, namely
LV, right ventricle (RV), left atrium (LA), and right atrium (RA). For illustrative
purpose, we address only the translation parameter in P as in Fig. 10.7a. In other
words, we are only interested in finding the center position P0 D .X0; Y0/ of the LV
in an A4C echocardiogram, assuming that the orientation of the LV is upright and
the scale/size of the LV is fixed. It is straightforward to extend the 2D case to the
5D-parameterization.

Suppose that, during running time, we randomly sample an image patch I.P /
centered at position P D .X; Y /. If there exists a function F1 that does the
following: given an image patch I.P / as input, it outputs the difference vector dP
between the current position P and the target position P0, i.e., dP D P0 � P , then
we achieve the detection using just one scan. Mathematically, through the function
F1 that defines a mapping F1 W I ! dP , the ground truth position P0 is calculated
as follows:

dP D F1ŒI.P /�; P0 D P C dP D P C F1ŒI.P /�: (10.19)
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Fig. 10.7 (a) A graphical illustration of regression-based detection using a 2D translation
parameterization: the learned regressor predicts the difference vector. (b) A robust fusion algorithm
for regression-based object detection. The white denote scanning boxed and predicted difference
vector, the light gray is the fused box, and the dark gray is the ground truth box. Reprinted from
[37]. c�2010 Elsevier

Learning the function F1ŒI.P /� is referred to as regression in machine learning.
From human anatomical atlas, we know that in the A4C echocardiogram there

is only one target LV available, whose relation with other anatomies such as LA,
RV, and RA is geometrically regularized (that is why they are called left/right
ventricle/atrium). Also there exists a strong correlation among their appearances,
defining the so-called anatomical image context. By knowing where the LA, RV, or
RA is, we can predict the LV position quite accurately. In principle, by knowing the
current position (i.e., knowing P ) and then looking up the map/atlas that tells the
difference from the target (i.e., telling dP through the function), one can reach
the target without exhaustive search.

Medical atlases are widely used in the literature [1, 2, 19, 22, 25]. However, the
methods in [1, 2, 19, 22, 25] use the atlases as an explicit source of prior knowledge
about the location, size, and shape of the anatomic structures and deform it to match
the image content for registration, segmentation, tracking, etc. In this paper, we take
an implicit approach, that is, embedding the atlases in a learning framework. After
learning, the atlas knowledge is fully absorbed for the specific task and the atlases
are no longed kept.

We collect training data from an annotated database. As in Fig. 10.8 (again using
2D translation for illustration), we form the input–output pairs as training data. By
randomly varying the location within a prior range, we crop out different local image
patches while recording their corresponding difference vectors. Similarly, we can
extract the training data for a 5D parameterization. Note that the number of training
pairs is not limited by the number of training images as we can arbitrarily vary
the location within the prior range. In theory, we wish to form the training pairs as
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Fig. 10.8 Training image examples (generated based on the image in Fig. 10.7a): image I and its
associated difference vector dP D .dX; dY /. Reprinted from [37]. c�2010 Elsevier

many as possible in order to learn a robust regressor; in practice, the actual number
of training pairs is limited by the computer storage and memory space.

We now confront a multiple regression setting with a multidimensional output,
i.e., the input variable is an image patch, depicted by a multidimensional vector,
and the output variable is a multidimensional displacement vector. This regression
setting has not been well addressed in the machine learning literature [13]. We
leverage the boosting principle to fulfill the learning challenge, which results in
the IBRR algorithm. Please refer to [37] for implementation details.

10.2.3.1 Detection Algorithm

In theory, only one scan is needed to find the target; in practice, we conduct a
sparse set of random scans and then estimate the parameter using fusion for a robust
solution. Suppose that M random samples with parameters

˚
P h1i; P h2i; : : : ; P hM i�

are scanned. For each P hmi, we invoke the regressor to predict the difference
parameter dP hmi and, subsequently, the target parameter P hmi

0 as follows:

P
hmi
0 D P hmi C dP hmi D P hmi C F1

h
I
�
P hmi�i ; m D 1; 2; : : : ;M: (10.20)

A simple fusion strategy is to take the sample mean, assuming that the predicted
difference parameters are i.i.d.
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OP0 D
PM

mD1 P
hmi
0

M
: (10.21)

While taking the sample mean is quite effective, we empirically find that some
of the predicted difference parameters are far away from the ground truth, which
could compromise the final estimation. A better strategy is to associate the predicted
difference parameter with a confidence score that calibrates the goodness of
the prediction. Unfortunately, our IBRR algorithm is a black-box approach and
currently does not provide such a score.

To address the above, we learn a binary classifier (or detector) D that separates
the object from the background and use its posterior probability of being positive,
denoted by pd , as a confidence score. After finding the mth prediction P hmi

0 , we

apply the detector D to the image patch I
�
P

hmi
0

�
. If the detector D fails, we discard

the mth sample; otherwise, we keep the sample and its confidence score qhmi
d . This

way, we have a weighted set of valid scans
n�
P

hj i
0 ; q

hj i
d

�
I j D 1; 2; : : : ; J

o
(note

that J � M as samples might be dropped), from which we calculate the weighted
mean as the final estimate OP0,

OP0 D
PJ

jD1 q
hj i
d P

hj i
0

PJ
jD1 q

hj i
d

: (10.22)

In practice, we stop scanning when J � Jvalid in order to further save computation.
If there is no sample P

hmi
0 passing D, then we use the unweighted mean of

P
hmi
0 as the final estimate as in (10.21). Figure 10.7b illustrates the scanning and

fusion processes and Fig. 10.9 summarizes the proposed regression-based detection
algorithm.

Combining the regressor and binary detector yields an effective tool for medical
anatomy detection. When compared with the method using only the regressor, it
needs only a smaller number of scans to reach a better precision. Figure 10.10
demonstrates this improvement using the 2-D translational case. Three images are
shown along with their 100 predicted positions (the dots). The majority of the
prediction is close to the ground truth (the neighboring point) although outliers
exist. Figure 10.10 also shows the predicted points passing the detector: All the
outliers are eliminated, thereby significantly reducing the uncertainty of the estimate
as evidenced by the smaller region bounded by the 95% confidence curve.

10.2.3.2 Classification-Based Versus Regression-Based Object Detection

A successful object detection approach based on machine learning must harness the
learning complexity in its offline learning and the computational complexity in its
online inference from a test image.
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Fig. 10.9 The proposed regression-based object detection algorithm. Reprinted from [37]. c�2010
Elsevier

• Learning complexity. In the classification-based approach, the main challenge
lies in handling the number of negatives—anything other than positive is nega-
tive, apart from the large image appearance variations in positives and negatives.
In theory, one image contributes one positive (assuming the single presence
of the anatomy) but innumerable negatives. The dominance of negatives poses
a significant challenge for learning an effective classifier of good separability
between positives and negatives. In the regression-based approach, the challenge
is aggravated because we have to associate a real-valued output or vector for each
sample, rather than a binary variable in the classification-based approach.

• Computational complexity in inference. This is related to the running-time
detection speed. In the classification-based approach, brute force exhaustive
search is time consuming as its computation is exponential in the dimensionality
of the parameter space. In the regression-based approach, the exponential nature
of the computation in inference no longer exists. Also, the learned model
complexity affects the inference complexity: the more sophisticated the model is,
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Fig. 10.10 The left row shows the 100 predicted target outputs (the dots) and the right row shows
only the predicted target outputs (the dots) passing the detector. The curve is the 95% confidence
curve whose center is the final estimate of the target position and the neighboring point indicates
the ground truth position. The regions bounded the 95% confidence curves on the images in the top
row are significantly smaller than those in the bottom row. Reprinted from [37]. c�2010 Elsevier

the slower is the inference. Although the learned regressor is more complex than
the binary detector, its overall computational complexity in inference is much less
than that of the binary detector because of the avoidance of exhaustive search.

Clearly, there is a trade-off between the learning complexity and computational
complexity in inference. The classification-based approach learns a less complex
model and runs slower; the regression-based approach learns a more complex model
and runs faster. However, for the regression-based detection to work, the image has
to possess the anatomical context (or some kind of geometric context). Table 10.1
presents a summary of comparison between the classification-based and regression-
based object detection approaches.
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Table 10.1 Comparison of the classification- and regression-based object detection
approaches. Reprinted from [37]. c�2010 Elsevier

Detection approach Regression-based Classification-based

Representative work This work Viola and Jones [26]
Where applicable Medical anatomy detection Generic object detection
Use of context Use anatomical context Use no context information
Number of target objects Known Unknown
Learning method Regression Binary classification
Learning complexity High Low
Inference method Sparse scanning and

sample averaging
Exhaustive scanning and

ad hoc grouping
Detection speed Extremely fast Fast

Fig. 10.11 Nonrigid deformation estimation for the left ventricle in cardiac CT with the inner
contour for endocardium and the outer contour for epicardium. (a) Mean shape. (b) After boundary
adjustment. (c) Final delineation by projecting the adjusted shape onto a shape subspace (50
dimensions). Reprinted from [34]. c�2008 IEEE

10.3 Discriminative Learning for Anatomical Structure
Segmentation

In this section, we present three approaches for segmenting anatomical structures. In
the first approach of discriminative active shape model (ASM), we replace the edge
response that guides the ASM fitting with learned boundary detectors. In the second
method, we continue to present the SRM used for shape segmentation this time.
Finally, we present a discriminative formulation to learn a shape fitting function.

10.3.1 Discriminative Active Shape Model

After automatic object localization, we align the mean shape with the estimated
pose. We then deform the mean shape to fit the object boundary. ASMs are widely
used to deform an initial estimate of a nonrigid shape under the guidance of
the image evidence and the shape prior. The nonlearning-based generic boundary
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detector in the original ASM [4] does not work in our application due to the complex
background and weak edges. Learning-based methods have been demonstrated to
have better performance on 2D images [7,12,18] since they can exploit more image
evidences to achieve robust boundary detection. In the previous work [7, 18], a
detector was trained to detect boundary with a specific orientation (e.g., horizontal
boundary). In order to detect boundary with different orientations, we need to
perform detection on a set of rotated images.

Here we extend learning-based methods to 3D and completely avoid time-
consuming volume rotation using our efficient steerable features. Here, boundary
detection is formulated as a classification problem: whether there is a boundary
passing point .X; Y;Z/ with orientation ( ; �; �). This problem is similar to the
classification problem we solved for position–orientation estimation. Therefore, the
same approach is used to train a boundary detector using the probabilistic boosting-
tree (PBT) [23] and steerable features.

Our nonrigid deformation estimation approach is within the ASM framework.
The major difference is that we use a learning-based 3D boundary detector, which
is more robust under complex background. The trained boundary detector is used to
move each mesh point along the mesh surface normal to the optimal position where
the estimated boundary probability is maximized. Since more accurate delineation
of the shape boundary is desired, this stage is performed on the original high
resolution volume. Figure 10.11b shows the adjusted shape of LV in a cardiac CT
volume, which follows the boundary well but is not smooth and unnatural shape
may be generated. Shape constraint is enforced by projecting the adjusted shape
onto a shape subspace to get the final result [4], as shown in Fig. 10.11c.

10.3.2 Shape Regression Machine (SRM)

After the first stage that finds the bounding box (parameterized by OP0) to contain the
object, we have the object rigidly aligned. This solves an initialization problem. For
example, one common way is to transform the mean shape into the bounding box
as an initial guess. In the second stage, we are interested in inferring the deformable
part S .

10.3.2.1 Basic Idea

We formulate the deformable shape inference again as a regression problem. In other

words, we seek a function F2 that tells the shape S based on the image patch I
� OP0

�

that is assumed to contain the object of interest.

S D F2
h
I. OP0/

i
: (10.23)
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Fig. 10.12 Training image examples: image I and its associated deformable shape S . The
normalized image size is 104 by 80. Reprinted from [37]. c�2010 Elsevier

In [5], Covell presented one of the earliest linear models to predict point
positions from intensity. A so-called coupled manifold model based on a joint
Gaussian distribution was proposed to combine the control point information and
the image intensity vector within a neighborhood of the control point. Recently,
Cristinacce and Cootes [6] used boosted regression to predict the displacement from
the true feature location based on the local neighborhood appearance in the ASM
framework. The AAM [3] also uses a linear regression prediction form to some
extent. In a recent work of Saragih and Goecke [21], a nonlinear regressor was used
to replace the linear parameter updating module in the AAM fitting, which enabled
better fitting accuracy.

10.3.2.2 Learning the Regression Function F2

Because we deal with one particular anatomical structure (say LV) imaged by one
particular medical device (say ultrasound), there exists regularity in its appearance
and shape although the variations can be quite significant. Figure 10.12 displays
several images with corresponding shapes that are rigidly aligned to the mean shape.
As mentioned earlier, a linear modeling of the appearance and shape is insufficient.
Here we attempt nonlinear modeling.

Given an annotated database, we extract corresponding pairs of (already rigidly
aligned) shape and appearance as in Fig. 10.12. We also slightly perturb the rigid
parameter to accommodate imperfect localization derived from the first SRM stage.
We now again confront a multiple regression setting with a multidimensional output;
this time the output cardinality is much higher.

10.3.2.3 Inference Algorithm

To improve robustness, we slightly perturb the estimated bounding box OP0 to
generate L image patches

˚
I h1i; I h2i; : : : ; I hLi� and apply the regressor to obtain

shape estimates
˚
S h1i; S h2i; : : : ; S hLi�, where

S hli D F2
h
I hli

i
I l D 1; 2; : : : ; L: (10.24)
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We also build a nonparameteric kernel density qs.S/ based on the prior shape
examples and use it as a confidence score. The density qs.S/ is estimated as

qs.S/ D
PC

cD1 h� .S ISc/
C

; (10.25)

where fSnI c D 1; 2; : : :; C g is the set of training shapes and h�.S ISc/ is the radial
basis function (RBF) kernel,

h�.S ISc/ D rbf� .S ISc/ D exp

 
�kS � Sck2

2�2

!
; (10.26)

whose parameter �2 is set empirically as the sample variance:

�2 D 1

C

CX

cD1

�� NS � Sc
��2 NS D 1

C

CX

cD1
Sc: (10.27)

Finally, we output the weighted mean as the final estimate OS for the shape
parameter (we empirically choose L D 10):

OS D
PL

lD1 qs
�
S hli� S hli

PL
lD1 qs

�
S hli� : (10.28)

Figure 10.13 summarizes the proposed regression-based shape inference algorithm.
In [37], we used the SRM algorithm to automatically detect and segmentation

the LV endocardium in A4C echocardiogram. It takes the SRM approach with
the IBRR regression implementation about 120 ms to finish both detection and
segmentation. The SRM detection speed is much faster than the brute-force
search while yielding almost the same detection precision. The SRM segmentation
accuracy outperforms the AAM method and other conventional regression methods
such as nonparameteric kernel regression (NPR), linear methods, and their nonlinear
kernel variants such as kernel ridge regression (KRR), and support vector regression
(SVR).

10.3.3 Discriminative Shape Fitting

Deformable shape segmentation can be considered as searching through a model
space for the model that best represents a target shape. In order to measure the
fitness of a hypothesis model, fitting functions are built for characterizing the
relationship between the model and image appearance. A desired fitting function
should differentiate correct models from their background in the model space.
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Fig. 10.13 The proposed regression-based deformable shape inference algorithm. Reprinted from
[37]. c�2010 Elsevier

In this section, we present a comparative study on how to apply three dis-
criminative learning approaches—classification, regression, and ranking—to learn
fitting functions from training images with expert annotations [31]. By using
discriminative learning in the model space, the fitting function can be learned in a
steerable manner. We discuss how to extend the classification approach from object
detection to deformable object segmentation. We also propose a regression-based
and a ranking-based approach for learning the fitting functions. The fitting function
is trained to produce the highest score around the ground truth solution, and it
also possesses a suitable shape to guide optimization algorithms to this solution.
To address the high-dimensional learning challenges presented in the learning
framework, we apply a multilevel approach to learn all discriminative models.
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Fig. 10.14 The feature image x associated with a hypothesis model C . The contour represented by
the model C is plotted as blue line. The image patch enclosed by the big box contains global fitness
information. The image patches enclosed by the small boxes contain the local fitness information.
The image x is composed by image patches with normalized orientation as shown on the right.
Examples of Haar-like features are also shown in x. Reprinted from [30]. c�2008 IEEE

10.3.3.1 Discriminative Learning Approaches

A shape in an image I can be parameterized by a set of continuous model
parameters,C , which contains both rigid and nonrigid components. Given an image,
I , and a hypothesis model,C , a feature image, x.I; C /, can be extracted to describe
the image appearance associated with C . For conciseness, we use x instead of
x.I; C / when there is no confusion in the given context.

There are a variety of ways of building shape models and computing feature
images [29]. The discriminative learning approaches presented are not bound to a
specific shape model. A simple way is to represent a shape by a set of control points
and used Point Distribution Model (PDM) [4]. A PDM is built by aligning the train-
ing shapes using the generalized Procrustes analysis [4] and applying PCA to the
aligned shapes. The model C is defined as .X; Y; �; Sx; ˛1; ˛2; : : :/, including pose
parameters (2D translation, rotation, and scale) and shape parameters corresponding
to a reduced set of eigenvectors associated with the largest eigenvalues. For a shape
C within an image I , the feature image x.I; C / can be extracted efficiently by
combining global and local image information, as shown in Fig. 10.14. Then the
Haar-like image features can be computed rapidly as features for discriminative
fitting functions.

A supervised learning approach attempts to train a fitting function f .x.I; C //
based on a set of training images fI g and their corresponding ground-truth shape
models fC g. The desired output of f is specific to the discriminative approach.



300 S.K. Zhou et al.

Fig. 10.15 The learned f .I; C / when C is one dimensional: (a) a classification approach, (b) the
regression approach, and (c) a ranking approach. The ground truth of the model is C . Reprinted
from [31]. c�2008 Springer

Classification. The classification approach learns a classifier f to indicate whether
a hypothesis shape C matches the one seen in image I or not. The desired output
y of f is a signed binary value. Whether a feature image x.I; C / is positive or
negative is determined by the distance between C and the ground truth model C as
provided in the image I . The desired classification output is

y D
�
1 if kC � Ck � �

�1; otherwise
; (10.29)

where � is a threshold that determines the aperture of f . The learned f .x.I; C //
is a boxcar function around the ground truth. Figure 10.15a shows an ideal learned
function f when C is one dimensional. Because the learned f only provides binary
indication, an exhaustive search is necessary to estimate the solution, which is
computationally prohibitive when the dimensionality of the model C is high.

Regression. The regression approach [30] learns a regression function f with real-
valued output, which indicates the fitness of a hypothesis modelC to an image I . In
order to facilitate searching, the desired output y of f is constrained to be a normal
distribution:

y D N .C IC ;˙/; (10.30)

where ˙ is a covariance matrix determining the aperture of f . The learned f
has a smooth and unimodal shape, e.g., a 1D example as shown in Fig. 10.15b.
The regression function f learned in this way can be effectively optimized by
general-purpose local optimization techniques, such as gradient descent or simplex,
due to f ’s single maximum and smoothness. However, when compared with a
classification approach, the desired output is more complicated and, hence, more
information needs to be learned at the training stage as it requires the regressor to
produce a desired real value for each point in the model space. Boosting principle
is employed to learn the regressor by selecting relative features to form an additive
committee of weak learners. Each weak leaner, based on a Haar-like feature that
can be computed rapidly, provides a rough fitness measurement of the object to
the image’s appearance. The learned regressor computes a robust measurement of
fitness by integrating the measurements of selected weak learners. Refer [30] for
implementation details.

Ranking. Discriminative learning via ranking was originally proposed to retrieve
information based on user preference [8]. We propose a ranking approach for
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learning a partial ordering of points in the model space [31]. The ordering learned
by the ranking function provides the essential information to guide the optimization
algorithm at the testing stage. Unlike a regression approach, which forces the
regressor to produce an exact value at each point in the model space, ranking only
tries to learn relative relations between point pairs in the model space. Let .C0; C1/
be a pair of points in the model space, and .x0; x1/ be its associated feature image
pair. The ordering of x0 and x1 is determined by their shape distance to the ground
truth: The one closer to the ground truth has a higher rank. We learn a ranking
function f to satisfy the following constraint:

8
<

:

f .x0/ > f .x1/ if kC0 � Ck < kC1 � Ck
f .x0/ < f .x1/ if kC0 � Ck > kC1 � Ck
f .x0/ D f .x1/; otherwise

(10.31)

Figure 10.15c illustrates the basic idea of the ranking approach. There
are five points in the 1D model space, and C is the ground truth. At
the training stage, a ranking function f is learned to satisfy the ordering
constrains: f .x.I; C //>f .x.I; C2//, f .x.I; C2//>f .x.I; C1//, f .x.I; C //>
f .x.I; C3//, and f .x.I; C3//>f .x.I; C4//. Similar to the regression approach,
the learned ranking function f is unimodal, which is desirable for local optimization
techniques. However, the model of ranking is simpler, in the sense that the amount
of information to be learned for ranking is less than the amount for regression. The
regression approach learns a full ordering of points in the model space, while the
ranking approach only learns a partial, pairwise ordering.

Similar to the boosting-based regression, we employ the boosting principle
to learn the ranking function by selecting relative features to form an additive
committee of weak learners. Refer [31] for implementation details.

10.3.3.2 Learning in a High-Dimensional Space

The first step toward learning a discriminative function is to sample training exam-
ples in the model space. As a result of the curse of dimensionality, the number of
training examples should be an exponential function of the model’s dimensionality
to ensure training quality. This poses a huge challenge to applying discriminative
learning to deformable segmentation applications, where the dimensionality of
the model space is usually high. Another challenge is the increasing difficulty of
discriminating the correct solution from its background when the background points
get closer to the solution. In this situation the image appearance of the background
points becomes more and more similar to that of the correct solution. As a result
of these two challenges, learning a single function across the whole model space to
accurately distinguish the optimal solution from its background is ineffective.

We use a multilevel approach [30] to learn a series of discriminative functions
fk , k D 1; : : : ; K , each of which focusing on a region that gradually narrows down
to the ground truth. Let ˝k be the focus region of fk in the model space, which is
defined within an ellipsoid centered at the ground truth:
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˝k D
8
<

:C D .c1; c2; : : :; cQ/

ˇ̌
ˇ̌
ˇ̌
QX

qD1

�
cq � cq

�2.
r2k;q � 1

9
=

; ; (10.32)

whereQ is the dimensionality of the model space andRk D .rk;1; : : : ; rk;Q/ defines
the range of the focus region. The focus regions are designed to have a nested
structure gradually shrinking to the ground truth:

˝1 � ˝2 � � � � � ˝K � ˝ 3 C; (10.33)

where˝1 defines the initial region of the model parameters. It should be big enough
to include all the possible solutions in the model space. The final region ˝ defines
the desired segmentation accuracy.

In segmentation applications, the initial focus region˝1 is highly elongated due
to the variation in parameter range. It is desirable to first decrease the range of the
parameters with a large initial range. The evolution of the range is designed as:

rkC1;q D
�
rmax
k =ı if rk;q > rmax

k =ı

rk;q otherwise
; (10.34)

where rmax
k is the largest value inRk and ı is a constant controlling the shrinking rate

of focus regions (we empirically set ı D 2:9 for all experiments). Geometrically,
the region gradually shrinks from a high-dimensional ellipsoid to a sphere, and then
shrinks uniformly thereafter. The top figure in Fig. 10.16 shows the evolution of the
focus regions in a 2D example.

At the testing stage, we apply optimization algorithms sequentially to the learned
functions to refine the segmentation results. At the kth stage, we want the solution
fallen within the region ˝k to be pushed into the region ˝kC1. In order to achieve
this, the learned function fk should be able to differentiate the instances in the
region ˝kC1 from those in the region ˝k � ˝kC1 and provide effective guidance
to the optimization algorithms especially in the region ˝k � ˝kC1. Data sampling
strategies should be accordingly designed.

Classification. For the classification approach, the learned function fk should be
able to differentiate the instances in the region˝kC1 from those in the region˝k �
˝kC1. In order to achieve this, the positive examples are sampled from the region
˝kC1 and the negatives from the region˝k�˝kC1. Figure 10.16 shows an example
of two-dimensional sampling.

Regression. For the regression approach, a gradient sampling is proposed in [30].
The learned regressors provide guidance to optimization algorithms based on the
local gradient. Because the regressor fk has a large gradient in the region˝k�˝kC1,
more training examples are drawn from the region˝k �˝kC1 to ensure the training
quality.
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Fig. 10.16 An example of sampling training data in a 2D model space. The first row shows
the three nested focus regions defined by R1 (the large region), R2 (the medium region), and
R3 (the small region). The second row shows the sampling results of classification, where positive
examples are drawn as dots in the small region and negative examples as dots outside the small
region. The third row shows the sampling results of regression. The fourth row shows the sampling
results of ranking. Reprinted from [31]. c�2008 Springer
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Ranking. The objective of the ranking approach is to learn a partial ordering of
instances in the model space. Because we perform a line-searching optimization
approach, the ordering is established along the rays starting from the ground
truth. This ordering provides the essential information to guide the optimization
algorithms to the ground truth. Also, by learning the ordering information from
enough rays, the learned ranking function is unimodal with its global optimum at
the ground truth.

We propose a sampling algorithm to choose the training pairs for learning
the function fk . First, select a ray starting from the ground truth with a random
direction. Then sample J C 1 points fC0; C1; : : : ; CJ g on the selected ray, where
C0 is at the ground truth, and the remaining J points are sampled from the line
segment in the region ˝k � ˝kC1. These points are ordered based on the distance
to the ground truth. The parameter J is proportional to the length of the line
segment. The reason for sampling only from the line segment is that the ordering
on this part of the ray is most important for training fk , which is used to push the
solution from the region ˝k � ˝kC1 to ˝kC1. Finally, from the training image I ,
draw J pairs of training examples f.x.I; Cj /; x.I; Cj�1//; j D 1; : : : ; J /g, where
x.I; Cj�1/ should be ranked above x.I; Cj /. This process is repeated to sample as
many training pairs as available computer memory allows. Figure 10.16 shows the
sampling result in a 2D model space.

10.3.3.3 Discussion

In [31], we compared these three discriminative learning approaches on LV
segmentation from ultrasound images and facial feature point localization. We also
compared the three algorithms with other alternative approaches, such as ASM [4]
and AAM [3]. In order to enhance the performance of ASM, we also implemented
an enhanced ASM version that replaces the regular edge computation by boundary
classifiers, which is discussed in the previous section.

The segmentation algorithms using discriminative fitting functions consistently
outperform ASM and AAM by a large margin in the experiments. The performance
of ASM is improved by using discriminative boundary classifiers; however, it still
falls into the local extremes because the boundary classifier is local. For the three
discriminative learning approaches, the classification approach has relative poor
performance due to its coarse search grid in the exhaustive search. If we use a
fine search grid, the segmentation accuracy is expected to improve. The ranking
approach converges to the correct solution faster than the regression approach,
as indicated in the benchmarks of the first-level and the second-level refinement.
The main reason might be that ranking only attempts to learn a partial ordering
information in the model space, and hence its learning complexity is lower than
regression. The learned ranking functions are more effective in guiding the search
algorithm to the correct solution.

Like all discriminative learning problems, the discriminative learning approaches
suffer from the problem of overfitting, especially when the variation of training data
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does not cover the full variability. Furthermore, the number of sampled data points
is hardly sufficient when the dimension of the model space is high. Because of these
problems, the fitting function does not have the desired shape on some test data, and
the local optimization algorithm fails to converge to the ground truth.
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Chapter 11
Random Forest for Bioinformatics

Yanjun Qi

11.1 Introduction

Modern biology has experienced an increased use of machine learning techniques
for large scale and complex biological data analysis. In the area of Bioinformatics,
the Random Forest (RF) [6] technique, which includes an ensemble of decision
trees and incorporates feature selection and interactions naturally in the learning
process, is a popular choice. It is nonparametric, interpretable, efficient, and has high
prediction accuracy for many types of data. Recent work in computational biology
has seen an increased use of RF, owing to its unique advantages in dealing with
small sample size, high-dimensional feature space, and complex data structures.

The aim of this chapter is twofold. First, to provide a review of notable extensions
of RF in bioinformatics, whereby promising direction such as RF-based feature
selection is discussed. Second, to briefly introduce the applications of RF and its
extensions. RF has been applied in a broad spectrum of biological tasks, including,
for example, to classify different types of samples using gene expression of
microarrays data, to identify disease associated genes from genome wide association
studies, to recognize the important elements in protein sequences, or to identify
protein–protein interactions (PPIs).

11.2 Random Forest and Extensions in Bioinformatics

Random forest provides a unique combination of prediction accuracy and model
interpretability among popular machine learning methods. The random sampling
and ensemble strategies utilized in RF enable it to achieve accurate predictions as
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well as better generalizations. This generalization property comes from the bagging
scheme which improves the generalization by decreasing variance, while similar
methods like boosting achieve this by decreasing bias [47].

Three features of RF receive the main focus [6]:

• It provides accurate predictions on many types of applications;
• It can measure the importance of each feature with model training;
• Pairwise proximity between samples can be measured by the trained model.

Extending random forest is currently a very active research area in the compu-
tational biology community, where most previous efforts focused on extending the
features above. Several notable techniques among them are briefly introduced in the
sections that follow.

11.2.1 Classification Purpose

Random forest retains many benefits of decision trees while achieving better results
through the usage of bagging on samples, random subsets of variables, and a major-
ity voting scheme [6]. It handles missing values, a variety of variables (continuous,
binary, categorical), and is well suited to high-dimensional data modeling. Unlike
classical decision trees, there is no need to prune trees in RF since the ensemble
and bootstrapping schemes help RF overcome overfitting issues. Motivated by the
excellent performance of RF, developing RF variants is an active research topic in
computational biology [47].

One category of extension tried to revise how to construct trees in RF. For
instance, Zhang et al. [48] proposed a deterministic procedure to form a forest of
classification trees to maintain scientific interpretability in the structure of the trees.
The procedure screens trees by selecting a prespecified number, say 20, of top splits
of the root node and another prespecified number, say 3, of the top splits of the two
daughter nodes of the root node. This protocol of top nodes gives rise to a total of
180 possible (20 � 3 � 3) trees (Fig. 11.1), among which, those with perfect or near
perfect classification precision are of particular interests. Finally, a fixed number of
available trees are selected to form a deterministic forest. Their experiments claimed
that the deterministic forest performs similar to RFs, but with better reproducibility
and interpretability.

Researchers also tried to extend RF by considering special properties in biologi-
cal data sets, e.g., too many noisy features in DNA microarray data. Amaratunga
et al. [2] designed so-called “enriched random forest” for when the number of
features is huge and the percentage of truly informative features is small. To reduce
the contribution of trees whose nodes are populated by noninformative features,
enriched RF used a simple adjustment to choose the eligible subsets at each node by
weighted random sampling instead of simple random sampling. When the feature
space is huge and the ratio of noisy features is large, the performance of the base
classifiers degrades. This is because, almost all eligible features at each node,
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Fig. 11.1 A schematic illustration of the “deterministic forest” method for binary classification
(proposed in [48]). I1; : : : ; I20 are the top 20 splits of the root node. Each of these top splits leads
to a left (L) and a right (R) child node. The child nodes have their own splits (Lj;i and Rj;i , where
j 2 f1; : : : ; 20g and i 2 f1; 2; 3g). Three top splits are drawn underneath each of them. Based on
the combinations of the root splits (I1;:::;20) and the child splits (Lj;i and Rj;i ), the method made
multiple trees with different terminal nodes (circles). The terminal nodes are color coded based on
the counts of two classes. The more positive examples a terminal node has, the more black it is.
Nodes with “?” contain examples from both classes

are predominated by noninformative ones. This issue can be remedied by using
weighted, instead of simple, random sampling. By utilizing weights tilted in favor
of informative features, the odds of trees containing more informative features being
included in the forest increases. Consequently, the resultant enriched RF might con-
tain a higher number of better base classifiers, resulting in a better prediction model.

11.2.2 Measuring Feature Importance

The high-dimensional nature of many tasks in bioinformatics has created urgent
needs [37] for feature selection techniques. The goal of feature selection in this field
are manifold, where the two most important are: (a) to avoid overfitting and improve
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model performance, and (b) to gain a deeper insight into the underlying processes
that generated the data. The interpretability of machine learning models is treated
as important as the prediction accuracy for most life science problems.

Random forest directly performs feature selection while classification rules
are built. In bioinformatics, increased attentions of RF have focused on using it
for variable selection, e.g., to select a subset of genetic markers relevant for the
prediction of a certain disease. Feature importance is used to rank features and
there exist many possible ways [11] to define the measure. The following section
discusses several commonly used feature importance based on RF in bioinformatics.

11.2.2.1 Gini Importance

The first commonly used importance measure from RF is the Gini importance. Gini
importance is directly derived from the Gini index [6] on the resulting RF trees.
The RF classifier uses a splitting function called the Gini index to determine which
attribute to split on during the tree learning phase. The Gini index measures the level
of impurity/inequality of the samples assigned to a node based on a split at its parent.
For instance, under the binary classification case, where there are two classes, let p

represent the fraction of positive examples assigned to a certain node k and 1 � p

as the fraction of negative examples. Then, the Gini index at m is defined as:

Gk D 2p.1 � p/: (11.1)

The purer a node is, the smaller the Gini value is. Every time a split of a node is
made using a certain feature attribute, the Gini value for the two descendant nodes
is less than the parent node. A feature’s Gini importance value in a single tree is
then defined as the sum of the Gini index reduction (from parent to children) over
all nodes in which the specific feature is used to split. The overall importance in the
forest is defined as the sum or the average of its importance value among all trees in
the forest.

Learning on biological data is often characterized by a large number of features
and few available examples. As a simple estimate of the feature importance for the
prediction task, RF Gini feature importance is a popular choice used in biological
data mining tasks [37]. However, recent reports [41] pointed out that Gini measures
are biased in favor of variables taking more categories if predictors are categorical.

11.2.2.2 Permutation Based Variable Importance

RF permutation importance [11] is another important feature ranking measure when
using RF for feature selections. Before introducing this concept, the term of “out-
of-bag (OOB) samples” need to be explained. RF does not use all training samples
when constructing an individual tree. This leaves a set of OOB samples, which could
be used to derive the validated classification accuracy from the tree. RF permutation
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importance is measured by randomly permuting the feature variables and computing
the increase in OOB estimate of the accuracy loss. Specifically, to measure a feature
k’s importance in RF trees, the values of this feature is randomly shuffled in the
OOB samples. If we use Vk to describe the difference of the classification accuracy
between the intact OOB samples and the OOB samples with the particular feature
permutated, RF “permutation importance” [6] for feature k is then defined as the
average of Vk over all trees in the forest.

RF permutation importance covers the impact of each variable individually
while considering multivariate interactions with other features at the same time.
It uses an intuitive permutation strategy, and is utilized more frequently than Gini
importance in the general “random forest” literature. However, it is time consuming
to compute and its magnitude does not have a bounded value range which can be
negative. Similar to Gini importance, RF permutation importance was also shown
to unreliable when potential variables vary in their scale of measurement or their
number of categories [41].

11.2.2.3 Revised RF Feature Importance

The shortcomings mentioned in above two subsections led to several recent variants
of RF feature importance from bioinformatics community. Chen et al. [9] proposed
the so-called “depth importance” measure to reflect the quality of the node split
which is similar to the Gini importance. The major difference is that the depth
importance takes into account the position of the node in the trees. It is claimed
to be effective in identifying risk genes responsible for complex diseases.

In another notable work, Strobl et al. [41] proposed a revised RF model based
on conditional inference trees [21] (pruned trees using stopping criteria based on
multiple test procedures). The revised RF provides unbiased variable selection in
each individual classification tree. Using subsampling without replacement, the
resultant variable importance was claimed to provide reliable variable selection even
when the potential variables vary in their scales or vary in the number of categories.

Later, Strobl et al. [40] pointed out another issue of RF variable importance
which shows a bias toward correlated predictor variables. The issue of correlated
feature variables happens commonly in high-dimensional bioinformatics tasks, e.g.,
genomics. This paper [40] developed a conditional permutation scheme which used
the partition automatically provided by the fitted model as a conditioning grid.
The resulting measure was claimed to reflect the true impact of each predictor
(variable) better than the original, marginal approach. Simulation results proved that
even though the conditional permutation cannot entirely eliminate the preference of
correlated predictor variables, it provides a more fair way of comparison that can
help to identify the truly relevant feature variables.

Most RF importance measures reflect the average contributions among all trees
in a forest. Recently measures based on extreme statistic in a forest are proposed
as well. A good example is the “maximal conditional chi-square importance” from
[44]. For a specific feature it is defined as the maximal chi-square statistic among
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all nodes’ splits in a forest. This score was shown to improve the performance of RF
when using top-ranked features to refit RF. It was claimed to be more powerful in
identifying feature interactions based on simulation studies [44].

More recently, Altmann et al. [1] introduced a heuristic scheme for normalizing
feature importance measures that can correct the feature importance bias. The
method normalizes the biased RF measure based on a permutation test and returns
significance P-values for each feature. The repeated permutations are applied on
the response vector to preserve the relations between features. The P-value of the
observed importance provides a corrected measure that addresses the importance
bias issue. An improved RF model was then retrained to use top-ranked significant
variables with respect to the proposed new importance and was shown to improve
the prediction accuracy.

11.2.3 Random Forest Proximity

RF could provide the measure of pairwise proximity between examples using the
trained forest. More specifically, for a given forest f and two samples xi and xj ,
the RF similarity is calculated by the following procedure. First, we propagate the
value of each sample down all trees within f . Next, the terminal node position for
each sample in each of the trees is recorded. Let z.i/ D .z.i/

1 ; : : :; z.i/
K / be these tree

node positions for xi and similarly define z.j / for sample xj . Then the similarity
between xi and xj is set to:

S.xi ; xj / D
PK

kD1 I
�

z.i/

k DD z.j /

k

�

K
; (11.2)

where I.� / is the indicator function. As proposed by [6], the sample proximity from
RF could be utilized to remove outlier data samples. The noise issue commonly
exists in bioinformatics data sets. This strategy has been proved successful in
predicting drug response for cell-line gene expression data by removing outlier cell
lines in [36].

RF proximity in bioinformatics can also be used for certain classification tasks
where the train set provides no negative examples and exhibits a highly skewed
distribution between positive and negative classes. For these prediction tasks,
relative ranking among predictions normally matter and the cost associated with
various classes are different. In order to overcome the issue of problematic training
sets and achieve good relative ranking, Qi et al. [35] converted the classification into
a ranking task and handled it with a two-step approach using RF proximity. First, it
computes a similarity measure between a pair of samples. Then, this measure is used
to rank samples by a weighted k-nearest-neighbor (KNN) approach. The proposed
method has claimed to work well for the PPI prediction in yeast.
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11.3 Bioinformatic Applications of Random Forest
and Variants

In the past decade, RFs have been successfully applied to various problems in
computational biology. The popularity of RFs in this field arises from the fact that
RF can be applied to a wide range of data types, even if the problems are nonlinear or
involve complex high-order interaction effects. RF and its variants have been applied
on a variety of bioinformatic problems, such as gene expression classification, mass
spectrum protein expression analysis, biomarker discovery, sequence annotation,
PPI prediction, or statistical genetics. The following survey tries to cover some
representative applications.

11.3.1 Analysis of Microarray Gene Expression Data

The advent of DNA microarray technology [37] has enabled researchers to measure
the expression levels of large numbers of genes simultaneously. The resultant large-
scale data sets have stimulated a large body of research in bioinformatics which
also created great challenges for computational techniques. Most microarray gene
expression data sets suffer from the commonly known “curse-of-dimensionality”
issue where the dimensionality is huge (up to several tens of thousands of genes),
and the sample size is small (normally up to hundreds). Moreover, high ratio of
noise and variability from microarray experiments raise even more challenges. As
shown in Fig. 11.2, computational methods normally treat the microarray data as an
N � M matrix, where N is large, M is small, and N � M .

One important task in biomedical research is to distinguish disease samples from
nondisease samples as well as to classify different disease subtypes [39]. The sample
could be a patient, a tissue, or even tissue parts whose features are expressed values
of a set of genes or proteins, i.e., the so-called “molecular signature or profile.” For
using gene expression data to classify disease versus nondisease samples, Lee et al.
[26] carried over an extensive study to compare the KNN approach, various versions
of linear discriminant analysis (LDA), bagging trees, boosting, and RFs under the
same experimental settings. They found that RF was the most successful technique
used on the seven microarray data sets they tested.

A closely related popular topic tries to identify a set of biomarkers (normally
genes) from gene expression datasets that could maintain high classification accu-
racy of samples when used alone. Fast and efficient feature selection techniques have
attracted lots of attentions since the related data sets are high-dimensional and small.
Gene–gene interactions are importance factors to consider when selecting features
for disease classification; however, popular univariate selection methods could not
take them into account. Thus, researchers have proposed a number of techniques
to capture the correlations between genes using RFs based variable importance
[2, 15, 40, 46]. Several related methods have been covered in Subsect. 11.2.2. These
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Fig. 11.2 Schematic illustration for gene expression of microarray data. Figure modified from
[47]. From the computational perspective, the microarray data is described as an N � M

matrix. Each row describes a sample and each column represents a gene except the last column
which means the class label of each sample. gi;j is a numeric value representing the gene
expression level of gene j in the i th sample. ci is the class label of the i th sample [47]

importance measures could be used to filter the original feature set and then the
classification model could be retrained which might be a better fit. For instance,
the “enriched random forest” method, proposed by Amaratunga et al. [2], claims to
improve the RF performance on ten real gene expression data sets by selecting top-
ranked features using a weighted random sampling scheme for biomedical sample
classification. Diaz-Uriarte et al. [15] showed that RF is able to preserve predictive
accuracy while yielding smaller gene sets selected for the analysis of microarray
data when compared to LDA, KNN, and SVM.

In summary as an important subfield in bioinformatics, using gene expression
microarray has emerged as popular tools to identify common genetic factors that
influence health and disease. Random forest methods and its feature importance
measures provide the state-of-art performance for analyzing and identifying pa-
tients’ molecular profiles from gene expression data sets.

11.3.2 Analysis of Mass Spectrometry-Based Proteomics Data

Modern mass spectrometry technologies allow the determination of proteomic
fingerprints (e.g., expression levels of many proteins) of body fluids like serum or
urine. Differently from DNA microarrays which only relate to genetic (static) factors
of diseases, mass spectrum measurements can be used to diagnose the dynamic
status or to predict the evolution of a disease. In modern biology, mass spectrometry
technology grows to be an attractive framework for cancer diagnosis and protein-
based biomarker detection [5].
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Fig. 11.3 Schematic illustration of mass spectrometry-based proteomics data sets. Figure mod-
ified from [47]. The proteomics data generated by mass spectrometer are very similar to gene
microarray data in terms of the computational analysis. Differently from microarray data describes
the abundance of a protein or peptide in the sample

Figure 11.3 provides a schematic description of mass spectrometry-based pro-
teomics data sets. A typical mass spectrum sample is characterized by thousands
of different mass/charge .m=z/ ratios on x-axis, and their corresponding signal
intensity values are on y-axis. A set of samples’ mass spectrum features are treated
as a data matrix by computational mining methods. Such mass spectrum data sets
are also characterized by a small number of samples and a very high-dimensional
feature space. Like DNA microarray data, this “curse-of-dimensionality” issue
requires the computational algorithm to select the most relevant features and to make
the most use of the limited data samples [47].

Random forest holds a unique position in analyzing mass spectrometry-based
proteomics data for clinical classifications [18,20,22–24], since it considers feature
interactions in learning and is well suited for high-dimensional data samples. For
instance, RF has been demonstrated by Izmirlian et al. [22] in classifying SELDI–
TOF (surface-enhanced laser desorption/ionization time of flight) proteomic data
well with the advantages of robustness to noise and less dependence on tuning pa-
rameters. Later, Geurts et al. [18] presented a related tree ensemble approach named
“extra trees” [17] which selects at each node the best among K randomly generated
splits. Unlike RFs which are grown with multiple sample subsets, the base trees of
extra trees are grown from the complete training set and by explicitly randomizing
the splits. The approach was successfully validated on two SELDI-TOF data sets
for the diagnosis of rheumatoid arthritis and inflammatory bowel diseases.

Recently, Kirchner et al. [24] showed that a RF-based approach is feasible to
achieve real-time classification of fractional mass in mass spectrometry experi-
ments. Similarly, Karpievitch et al. [23] proposed a modified RF, named as “RFCC”
to deal with cluster-correlated data. Many mass spectrometry-based studies produce
cluster-correlated data where there exist replicated samples for the same subject.
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A common practice for dealing with replicated data is to average each subject’s
replicate sample set, which will reduce the data set size and might incur loss of
information. However, failure to account for correlation among samples may result
in overfitting of the training data and producing over optimistic error estimations.
Two strategies were utilized in RFCC to tackle this issue [23]: (1) a modified
RF grown using subject-level averages, and (2) a modified RF using subject-level
bootstrapping to substitute the original resampling step. The second scheme was
shown to be effective for classifying clustered mass-spectrum proteomics data.

11.3.3 Genome-Wide Association Study

Like gene expressions from microarray experiments and protein expressions
from mass-spectrum based technologies, comparing the genomes (whole DNA
sequences) of different samples can also give critical information of different
diseases [47]. More importantly, such studies, termed as “genome-wide association
study” (GWAS), can help to determine the susceptibility of each different individual
to complex diseases, as well as the response to different drugs based on individuals’
genetic variations [45].

With the revolutionary advancements of next-generation sequencing technolo-
gies, huge volumes of high-throughput sequence data have become easily obtained
and extremely cheap. This information has largely enhanced biologists’ knowledge
of many organisms and also expanded the impact of the genomes on biomedical
research. Genomewide association study is becoming increasingly important for
clinical decision support with respect to the diagnosis of complex diseases [45].

GWAS computational task involves scanning markers across the complete sets of
DNA sequences, or genomes, from many people to find genetic variations associated
with a particular disease or a biological symptom. One important concept in GWAS
is the so-called “SNPs” (single nucleotide polymorphisms), which is generated from
the following procedure. GWAS studies normally compare two groups of samples,
(people with or without the disease) by extracting DNA from each person’s sample
of cells. DNA is then spread on gene chips which could read millions of DNA
sequences. Rather than reading the entire DNA sequence, GWAS usually reads
the SNPs which are markers indicating the DNA sequence variation at a single
nucleotide position. It is estimated that the human genome has approximately seven
million of SNPs [25].

To fully understand the basis of complex disease, it is critical to identify the
important genetic factors involved, and the complex relationships between these
factors. Many complex diseases such as diabetes, asthma, or cancer arise from a
combination of multiple genes which often regulate and interact with each other
to produce the disease. Therefore, the goal of studying GWASs for these diseases
is to identify the complex interactions among multiple SNPs and together with
environmental factors which may substantially increase the risk of developing these
diseases [45]. This difficult task is commonly formulated into simpler tasks which
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Fig. 11.4 Schematic illustration of pairwise SNP–SNP interaction effects on sample classification.
The data matrix obtained from the SNP chip is similar to DNA microarray studies except that each
column describes a SNP variable. The pairwise SNP–SNP interactions are schematically illustrated
as the gray boxes in the right heat map where darker colors indicating stronger interactions and
associations with the disease of interest. Figure modified from [47]

try to identify pairwise SNP–SNP interactions or SNP-environment interactions.
Figure 11.4 provides a schematic illustration of pairwise interaction relationship
between multiple SNPs. Again, the set of samples (N ) and their SNP features (M )
could be treated as a data matrix from computational perspective (see Fig. 11.4).

Owing to the intrinsic ability to consider multiple SNPs jointly in a nonlinear
fashion [32], RF [6] has become a popular choice of many recent GWAS studies for
SNP–SNP interaction identification [3, 4, 9, 30, 45]. Using the feature importance
estimated from RF, it is possible to identify important SNP subsets that are
associated with the outcome of the disease.

RF is especially useful to identify features that show small marginal contributions
individually, but gives a larger effect when combined together. For example, the
initial attempt from [28] utilized RF permutation importance (Subsect. 11.2.2.2) as a
screening procedure to identify small numbers of risk-associated SNPs among large
numbers of unassociated SNPs using 16 complex disease models. RF was concluded
to outperform Fisher’s exact test when interactions between SNPs exist. Later, a
similar study from Bureau et al. [7] used a similar RF importance measure and
extended the concept on pairs of predictors, in order to capture joint effects. These
early studies normally limited the number of SNPs under analysis to a relatively
small range (30).

Recent studies developed feature importance variants from RF to a much larger
dimensional range, e.g., several hundred thousands of candidate SNPs. Besides,
the issue of correlated variables are also taken into account which commonly
exist in GWAS data. Cheng et al. [9] investigated the power of random forests in
identifying SNP interaction pairs by proposing the “depth importance” measure
(Subsect. 11.2.2.3) from RF trees. It was applied to analyze the complex disease
of age-related macular degeneration. Later, Wang et al. [44] proposed an alternative
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importance measure, “maximal conditional chi-square” (MCC in Subsect. 11.2.2.3),
for feature selection in GWASs. MCC measures the association between a SNP
and the outcome where the association is conditional on other SNPs. The method
estimated empirical P-values of SNPs by revising the RF permutation importance.
Compared with the existing importance measures, the MCC importance showed
more sensitivity to complex effects of risky SNPs.

Both GWASs and biomarker discovery involve feature selection technology and
therefore they are closely related to each other [47]. However, they have different
goals with respect to feature selection. The objective of biomarker discovery is to
find a small set of biomarkers (e.g., genes or proteins) to achieve good prediction ac-
curacies. This allows the development of cheaper and more efficient diagnostic tests.
Instead, the goal in GWASs is to find important genetic factors that are associated
with the outcome symptoms and to estimate the significance level of the association.

11.3.4 Protein–Protein Interaction Prediction

Protein–protein interactions are critical for virtually every biological function in the
cell. However, experimental determination of pairwise PPIs is a labor-intensive and
expensive process. Therefore, predicting PPIs from indirect information is an active
field in computational biology. Recently, researchers suggested supervised learning
for the task of classifying pairs of proteins as interacting or not. Three independent
studies [10, 27, 33] compared the performance of multiple classifiers in predicting
protein interactions. In all three studies, RF achieved the best performance on this
task when integrating various biological features such as gene expression, gene
ontology features, and sequence data. Figure 11.5 shows a schematic illustration
of how a RF performs information integrations for the task of classifying pairs of
proteins as interacting or not in yeast.

Most of the early studies have been carried out in yeast or in human [34],
which aimed to predict protein interactions within a single organism (called
“intraspecies PPI prediction”). More recently, researchers extended RF to predicting
PPIs between organisms (called “interspecies PPI prediction”), especially between
host and pathogens. For instance, Tastan et al. [43] applied the supervised RF
classification framework to predict PPIs between HIV-1 viruses and human proteins.
By integrating multiple biological information sources, RF defined the state-of-art
performance for this task. Figure 11.6 shows a schematic illustration of protein
interactions between HIV-1 and human proteins.

11.3.5 Biological Sequence Analysis

Computational analysis of biological sequences is a classic and still expanding
subfield in bioinformatics. Biological sequence describes continuous chains of
nucleotide acids (DNA) or amino acids (protein) which can be categorized based
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Fig. 11.5 Evidence was integrated using a random forest classifier for protein–protein interaction
prediction. Figure modified from [35]

Fig. 11.6 Schematic
illustration of protein–protein
interactions between HIV-1
(rightside) and human
proteins (leftside). Figure
modified from [43]

on the underlying molecule type: DNA, RNA, or protein sequence. Since more and
more species genomes have been sequenced, this area remains one of the most
important in bioinformatics. With biological mutations and evolution, sequence
data sets are usually enormous and complex, where efficient and accurate learning
models become critical factors [8].

Though there exist enormous biological sequence mining tasks, this section
covers only four typical ones where RF achieved good results. All these tasks try to
computationally identify the functional properties of subregions (sites) of DNA or
protein sequences.

The first type of task is to predict the phenotypes (symptoms) based on protein
sequence or DNA sequence. Segal et al. [38] utilized RFs to predict the replication
capacity of viruses, such as HIV-1, based on amino acid sequence from reverse
transcriptase and protease. Similarly, Cummings et al. [13] used RFs to model the
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relationships between the amino acid sequence of gene “rpoB” and the rifampin
resistance (“rifampin” is a bactericidal antibiotic drug). Gene “rpoB” is the gene
encoding the beta subunit of DNA-dependent RNA polymerase.

The second related task tries to cope with RNA editing. RNA editing represents
the process whereby RNA is modified from the sequence of the corresponding
DNA template. For instance, cytidine-to-uridine conversion (abbreviated as C-to-U
conversion) is common in plant mitochondria. The mechanisms of this conver-
sion remain largely unknown, although the role of neighboring nucleotides is
emphasized. Cummings et al. [12] suggested to use information from subregions’
flanking sites of interest to predict if C-to-U editing happens on mitochondrial RNA
sequences. Random forest was applied for this prediction task in three plant species:
“Arabidopsis thaliana”, “Brassica napus”, and “Oryza sativa [12]”. Recently, Strobl
et al. [41] proposed to work on the same C-to-U editing task by employing a revised
RF method based on learning conditional inference trees.

The third typical biosequence task RF has been applied to the identification
of “Post translational modifications (PTMs).” PTMs occur in a vast majority
of proteins and are essential for certain protein functions. Prediction of the
sequence location of PTMs is an important step in understanding the functional
characterization of proteins [19]. Among many possible PTMs, glycosylation site
and phosphorylation site are the two critical kinds of functional sites in protein
sequences. Their accurate localization can elucidate many important biological
process such as protein folding, subcellular localization, and protein transportation.
Hamby et al. [19] utilized the random forest algorithm for glycosylation sites
prediction and prediction rule extraction for yeast. Their work made use of the
pairwise patterns surrounding glycosylation sites for better predictions. The authors
claimed to observe a significant increase of prediction accuracy in the prediction of
“Thr” and “Asn” glycosylation sites.

The last task to cover in this section is associated with HIV-1 viruses. Human
Immunodeficiency Virus (HIV) is the pathogen causing the disease AIDS. The
invasion of HIV-1 Virus into human cells relies on the contact of its glycoprotein
“gp120” with two human cellular proteins, a receptor, and a coreceptor. The type of
coreceptor is crucial for the aggressiveness of the virus and the available treatment
options. Hence, Dybowski et al. [16] proposed to predict coreceptor usage based on
the viral genome sequences. A random forest-based method is developed to predict
coreceptor usage for new sequences using structures and sequences of “gp120.”
The good accuracy achieved in [16] made random forest a strong candidate for
computational diagnosis of viral diseases.

11.3.6 Some Other Related Applications

Moreover, RF has been tried on many other biomedical domains. For instance,
RF [14] shows to be a powerful statistical classifier in computational ecology.
Cutler et al. [14] compared the accuracies of RF and four other commonly used
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statistical classifiers on three different ecological data sets describing: (1) invasive
plant species’ presence in US California, (2) the rare lichen species’ presence in the
US Pacific Northwest, and (3) the nest sites for cavity nesting birds in Utah. RF
showed high classification accuracy in all three applications.

Another interesting application is for computational drug screening [29, 36],
where panels of cell lines are used to test drug candidates for their ability to inhibit
proliferation. Riddick et al. [29] built regression models using RF to predict drug
response for 19 Breast Cancer and 7 Glioma cell lines. RF was used in three
specific ways: (1) feature selection of drug gene expression signatures based on
RF permutation importance, (2) removing outlier cell lines based on RF proximity,
and (3) RF multivariate regression model for predicting continuous drug response.

More applications of RFs can be found in other different fields like quantitative
structure-activity relationship modeling [42], nuclear magnetic resonance spec-
troscopy [31], or clinical decision supports in medicine in general [11].

11.4 Summary

With the data explosion in modern biology, machine learning algorithms are
becoming increasingly popular. Since the data complexity is always rising, as a
nonparametric model, RF provides a unique combination of prediction accuracy
and model interpretability. This chapter mainly focused on explaining the notable
extensions and applications of RF in bioinformatics. The covered references are by
no means an exhaustive list, but are topics which have received much attention. We
therefore sincerely apologize to related papers that are not covered in this chapter.
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